Burst wave analysis of TAMA300 data with the ALF filter

and the TAMA collaboration
Abstract

• We present analysis status with ALF filter which is a kind of the slope filter.
• In our work, target signals are burst gravitational waves from stellar core collapses.
• We studied on detection efficiency for the galactic event and the trigger rate.
Contents

1. ALF filter
2. Optimization of window size
3. Performance
4. Trigger rate
5. Summary and future work
1.1 ALF filter

Alternative Linear Fit filter P.R.D 63, 042002 (2001)

The filter is expected to be Effective for burst signals.

Basis idea

- **slope : low**
 - Random noise

- **slope : high > threshold**
 - Burst signal

Event!
1.2 ALF filter

Mathematical expression

Fitting the data (N samplings) to a linear function $\text{at} + \text{b}$

- **a** Slope \hspace{1cm} **b** Offset

 Normalization

 $$X_a = \frac{a}{\sigma_a}, \quad X_b = \frac{b}{\sigma_b}$$

 σ_a, σ_b its standard deviation

 Correlation between X_a and X_b should be taken into account.

 output of ALF filter

 $$A = \frac{X_a^2 + X_b^2 - 2\alpha X_a X_b}{1 - \alpha^2}$$

 α is a covariance of X_a and X_b

- **example**

1kHz Sine-Gaussian signal + Gaussian noise

Output of ALF filter
2.1 Optimization of window sizes

Effective window size of N depends on waveform and duration time of the signals.

Window size \{ too long, too short \} \rightarrow \text{Decrease of } A

\begin{itemize}
 \item 500Hz sine-Gaussian signal \hspace{1cm} N = 30
 \item 800Hz sine-Gaussian signal \hspace{1cm} N = 20
\end{itemize}

Optimization of N is important for the filter.

We have to find an effective combination of window sizes for burst event search.

\textbf{Parameters to be selected}

1. number of windows; p
2. window size; N_i ($i=1,p$)

\textit{For example},

A combination of window size $N=(10,20,30)$ \rightarrow $p=3$
2.2 Optimization of window sizes

Applied signal for parameter optimization → *sine-Gaussian signal 500Hz~2500Hz*

1. Optimal combination of window sizes for a given \(p \)

\[
\begin{align*}
 p & \quad \text{optimal window size } N \\
 2 & \quad (8,12) \\
 3 & \quad (8,12,18) \\
 4 & \quad (8,12,14,20) \\
 5 & \quad \ldots
\end{align*}
\]

2. Dependence of \(p \)

- \(p \) up → Detection probability up
- \(p > 3 \) derivative rate became less
- \(p = 4 \)
 \[N = (8,12,14,20) \]
3 Performance

Performance relative to Matched Filtering for the DFM catalogue signals

- burst signal
- background

Dimmelmeier et al. A&A 393 523

white noise

Performance

\[N = (8, 12, 14, 20) \rightarrow 80\% \]

Detection efficiency for the galactic events

Data

- A part of TAMA300 DT9

Injection signal

- 26 kinds of signals from the DFM catalogue

Model

- A & A 125 1958

Detection efficiency

\[h_{rss} \]

About 115 pc
4 Trigger rate

Processing data

About **360 hours** data of *DataTaking9* (24/12/2003 ~ 10/1/2004)

- Trigger rate with the filter (Events/sec)

Typical trigger rate \(A = 10^3 \) about 320pc \(\rightarrow 2.6 \times 10^{-2} \) (events/sec)
5 Summary and future work

Summary

• Study of ALF filter which is expected effective for burst event search
• Performance relative to Matched Filtering → 80%
• Typical trigger rate → $2.6 \times 10^{-2} \ (\text{events/sec})$ at 320pc

Future work

Reduction of fake events

Veto analysis

Upper limit