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Motivation

Current astrophysical observations strongly indicate the
existence of (super)massive “dark” compact object in
the core of almost every galaxy.

“Geometry-mapping” with LISA. Extreme mass ratio
inspirals, solar mass objects inspiralling toward a
supermassive 105 – 109M� central object, serve as
probes for surrounding geometry.

provide evidence in favour of GR’s ‘no-hair’ theorem
(uniqueness of Kerr metric)

reveal the true identity of the ‘dark objects’ in galactic
nuclei (Kerr BH vs Boson stars, ...)
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Building ‘quasi-Kerr’ metric

Start with the exterior Hartle-Thorne metric describing
the space-time of any axisymmetric & stationary body
up to O(J2) accuracy:

gHT
αβ = gHT,Kerr

αβ (up toO(J2)) + εhHT +O(J3+),

where ε = −Q/M3 −
(

J/M2
)2. For Kerr BH ε = 0,

Q/M3 = −
(

J/M2
)2, for NS Q/M3 = −α

(

J/M2
)2, where

α ∈ [2, 12].

Transform to Boyer-Lindquist coordinates and

gQK
αβ = gKerr

αβ + εhαβ

Depends on M , a = J/M2, ε.

GWDAW 9, Annecy, December 15-18, 2004 – p.3/12



Building ‘quasi-Kerr’ metric

Start with the exterior Hartle-Thorne metric describing
the space-time of any axisymmetric & stationary body
up to O(J2) accuracy:

gHT
αβ = gHT,Kerr

αβ (up toO(J2)) + εhHT +O(J3+),

where ε = −Q/M3 −
(

J/M2
)2. For Kerr BH ε = 0,

Q/M3 = −
(

J/M2
)2, for NS Q/M3 = −α

(

J/M2
)2, where

α ∈ [2, 12].

Transform to Boyer-Lindquist coordinates and

gQK
αβ = gKerr

αβ + εhαβ

Depends on M , a = J/M2, ε.
GWDAW 9, Annecy, December 15-18, 2004 – p.3/12



Geodesic motion

Formulate equations of motion using Hamilton-Jacobi
equations

Non-separable for generic orbits, lack of Carter
constant.

Employ canonical perturbation theory: H = H0 + εH1.
Constants of motion {Q0, P0} at zero-order, now should
satisfy (at first order)

Q̇ = −ε

(

∂H1

∂P

)

0

Ṗ = ε

(

∂H1

∂Q

)

0

.

Isolate secular changes by time averaging.

P =< Ṗ > t + P0, Q =< Q̇ > t + Q0
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Equatorial motion

Equations of motion are separable

Parametrize orbit in terms of (p, e):

r(χ) =
p

1 + e cos χ

Study periastron shift for Kerr and ‘quasi-Kerr’ orbits:
∆φKerr −∆φqK , where

∆φ =

∫ 2π

0

φ(χ) dχ.
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Periastron shift 1
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Periastron shift 3
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Data analysis

We generate ‘numerical kludge’ waveforms: using exact
geodesic motion with weak field quadrupole formula.

We will deal with waveforms without radiation reaction
so far.

Define ‘radiation reaction’ time scale TRR such that

Overlap =
(

hkerr
with−RR(TRR), hKerr

geodesic(TRR)
)

≤ 95%

Compute overlaps between Kerr and ‘quasi-Kerr’
waveforms without radiation reaction, but truncated at
TRR defined above.
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Comparison of waveforms
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Overlaps
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Summary

We are trying to formulate practical scheme for
‘spacetime-mapping’.

Assume that exterior space-time deviates slightly from
the Kerr metric. Only leading order deviation (which
appears in the the body’s quadrupole moment) is
considered

Compute geodesic motion

Quantify difference in geodesic motion by computing
periastron advance.

Construct kludge waveforms without RR.

Quantify difference in waveforms by computing overlaps
between Kerr and ‘quasi-Kerr’ waveforms truncated at
TRR.
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