Geodesic motion and kludge waveforms from a test-mass orbiting around 'quasi-Kerr' object.

<u>Stanislav Babak</u>¹ & Kostas Glampedakis²

1) Max-Planck-Institute, AEI, Golm

2) University of Southhampton

Current astrophysical observations strongly indicate the existence of (super)massive "dark" compact object in the core of almost every galaxy.

- Current astrophysical observations strongly indicate the existence of (super)massive "dark" compact object in the core of almost every galaxy.
- "Geometry-mapping" with LISA. Extreme mass ratio inspirals, solar mass objects inspiralling toward a supermassive $10^5 10^9 M_{\odot}$ central object, serve as probes for surrounding geometry.

- Current astrophysical observations strongly indicate the existence of (super)massive "dark" compact object in the core of almost every galaxy.
- "Geometry-mapping" with LISA. Extreme mass ratio inspirals, solar mass objects inspiralling toward a supermassive $10^5 10^9 M_{\odot}$ central object, serve as probes for surrounding geometry.
- provide evidence in favour of GR's 'no-hair' theorem (uniqueness of Kerr metric)

- Current astrophysical observations strongly indicate the existence of (super)massive "dark" compact object in the core of almost every galaxy.
- "Geometry-mapping" with LISA. Extreme mass ratio inspirals, solar mass objects inspiralling toward a supermassive $10^5 10^9 M_{\odot}$ central object, serve as probes for surrounding geometry.
- provide evidence in favour of GR's 'no-hair' theorem (uniqueness of Kerr metric)
- reveal the true identity of the 'dark objects' in galactic nuclei (Kerr BH vs Boson stars, ...)

Building 'quasi-Kerr' metric

Start with the exterior Hartle-Thorne metric describing the space-time of any axisymmetric & stationary body up to $\mathcal{O}(J^2)$ accuracy:

$$g_{\alpha\beta}^{HT} = g_{\alpha\beta}^{HT,Kerr}(up \, to \, \mathcal{O}(J^2)) + \epsilon h^{HT} + \mathcal{O}(J^{3+}),$$

where
$$\epsilon = -Q/M^3 - (J/M^2)^2$$
. For Kerr BH $\epsilon = 0$,
 $Q/M^3 = -(J/M^2)^2$, for NS $Q/M^3 = -\alpha (J/M^2)^2$, where $\alpha \in [2, 12]$.

Building 'quasi-Kerr' metric

Start with the exterior Hartle-Thorne metric describing the space-time of any axisymmetric & stationary body up to $\mathcal{O}(J^2)$ accuracy:

$$g_{\alpha\beta}^{HT} = g_{\alpha\beta}^{HT,Kerr}(up \, to \, \mathcal{O}(J^2)) + \epsilon h^{HT} + \mathcal{O}(J^{3+}),$$

where
$$\epsilon = -Q/M^3 - (J/M^2)^2$$
. For Kerr BH $\epsilon = 0$,
 $Q/M^3 = -(J/M^2)^2$, for NS $Q/M^3 = -\alpha (J/M^2)^2$, where $\alpha \in [2, 12]$.

Transform to Boyer-Lindquist coordinates and

$$g_{\alpha\beta}^{QK} = g_{\alpha\beta}^{Kerr} + \epsilon h_{\alpha\beta}$$

Depends on M, $a = J/M^2$, ϵ .

Geodesic motion

Formulate equations of motion using Hamilton-Jacobi equations

Geodesic motion

- Formulate equations of motion using Hamilton-Jacobi equations
- Non-separable for generic orbits, lack of Carter constant.

Geodesic motion

- Formulate equations of motion using Hamilton-Jacobi equations
- Non-separable for generic orbits, lack of Carter constant.
- Employ canonical perturbation theory: H = H₀ + ϵH₁.
 Constants of motion {Q₀, P₀} at zero-order, now should satisfy (at first order)

$$\dot{Q} = -\epsilon \left(\frac{\partial H_1}{\partial P}\right)_0 \quad \dot{P} = \epsilon \left(\frac{\partial H_1}{\partial Q}\right)_0$$

Isolate secular changes by time averaging.

$$P = \langle \dot{P} \rangle t + P_0, \quad Q = \langle \dot{Q} \rangle t + Q_0$$

Equatorial motion

Equations of motion are separable

Equatorial motion

- Equations of motion are separable
- **Parametrize orbit in terms of** (p, e):

$$r(\chi) = \frac{p}{1 + e \cos \chi}$$

Equatorial motion

- Equations of motion are separable
- **Parametrize orbit in terms of** (p, e):

$$r(\chi) = \frac{p}{1 + e \cos \chi}$$

Study periastron shift for Kerr and 'quasi-Kerr' orbits: $\Delta \phi_{Kerr} - \Delta \phi_{qK}$, where

$$\Delta \phi = \int_0^{2\pi} \phi(\chi) \ d\chi.$$

Periastron shift 1

Periastron shift 2

Periastron shift 3

We generate 'numerical kludge' waveforms: using exact geodesic motion with weak field quadrupole formula.

- We generate 'numerical kludge' waveforms: using exact geodesic motion with weak field quadrupole formula.
- We will deal with waveforms without radiation reaction so far.

- We generate 'numerical kludge' waveforms: using exact geodesic motion with weak field quadrupole formula.
- We will deal with waveforms without radiation reaction so far.
- **Define 'radiation reaction' time scale** T_{RR} such that

$$Overlap = \left(h_{with-RR}^{kerr}(T_{RR}), h_{geodesic}^{Kerr}(T_{RR})\right) \le 95\%$$

- We generate 'numerical kludge' waveforms: using exact geodesic motion with weak field quadrupole formula.
- We will deal with waveforms without radiation reaction so far.
- Define 'radiation reaction' time scale T_{RR} such that

$$Overlap = \left(h_{with-RR}^{kerr}(T_{RR}), h_{geodesic}^{Kerr}(T_{RR})\right) \le 95\%$$

• Compute overlaps between Kerr and 'quasi-Kerr' waveforms without radiation reaction, but truncated at T_{RR} defined above.

Comparison of waveforms

Overlaps

We are trying to formulate practical scheme for 'spacetime-mapping'.

- We are trying to formulate practical scheme for 'spacetime-mapping'.
- Assume that exterior space-time deviates slightly from the Kerr metric. Only leading order deviation (which appears in the the body's quadrupole moment) is considered

- We are trying to formulate practical scheme for 'spacetime-mapping'.
- Assume that exterior space-time deviates slightly from the Kerr metric. Only leading order deviation (which appears in the the body's quadrupole moment) is considered
- Compute geodesic motion

- We are trying to formulate practical scheme for 'spacetime-mapping'.
- Assume that exterior space-time deviates slightly from the Kerr metric. Only leading order deviation (which appears in the the body's quadrupole moment) is considered
- Compute geodesic motion
- Quantify difference in geodesic motion by computing periastron advance.

- We are trying to formulate practical scheme for 'spacetime-mapping'.
- Assume that exterior space-time deviates slightly from the Kerr metric. Only leading order deviation (which appears in the the body's quadrupole moment) is considered
- Compute geodesic motion
- Quantify difference in geodesic motion by computing periastron advance.
- Construct kludge waveforms without RR.

- We are trying to formulate practical scheme for 'spacetime-mapping'.
- Assume that exterior space-time deviates slightly from the Kerr metric. Only leading order deviation (which appears in the the body's quadrupole moment) is considered
- Compute geodesic motion
- Quantify difference in geodesic motion by computing periastron advance.
- Construct kludge waveforms without RR.
- Quantify difference in waveforms by computing overlaps between Kerr and 'quasi-Kerr' waveforms truncated at T_{RR} .