Bayesian modeling of source confusion in LISA data

Nelson Christensen, Sarah Vigeland
Carleton College

Richard Umstätter, Renate Meyer
University of Auckland

Graham Woan, Vimal Simha, John Veitch,
Martin Hendry
University of Glasgow
Source Confusion for LISA

- LISA sensitivity range 10^{-5} - 0.1 Hz
- Most abundant source will be close-by White Dwarf Binaries: 0.1 mHz to 3 mHz
- Source confusion below 1 mHz
- Resolvable sources above 5 mHz
- 1 mHz to 5 mHz band presents a data analysis challenge
- 50 000 to 100 000 potential signals
Markov chain Monte Carlo

- Developed a toy problem - N sinusoidal signals within noise
- Apply a numerical Bayesian technique, a Metropolis-Hastings algorithm
- Estimate parameters associated with each sinusoid, signal number N and noise level
- Bayesian – Occam's Razor preference for smaller N
Extraction of Parameters for Signal

- We assume a simple signal that consists of \(N \) superposed sinusoidal signals:

\[
f(t) = \sum_{i=1}^{N} [A_i^{(1)} \cos(2\pi f_i t) + A_i^{(2)} \sin(2\pi f_i t)]
\]

We fit this model to the data:

\[
d_t = f(t, \mathbf{a}, N) + \epsilon
\]

with noise \(\epsilon \sim N(0, \sigma^2) \)

\[
\mathbf{a} = [A_1^{(1)}, A_1^{(2)}, f_1, \cdots, A_N^{(1)}, A_N^{(2)}, f_N]
\]

\(N \) is also an unknown parameter.
Likelihood and Bayes

The joint likelihood that these data \(d = \{d_t\} \) arise from the parameter vector \(\mathbf{a} \) is given as
\[
p(d|\mathbf{a}) \propto \exp \left(-\frac{1}{2\sigma^2} \sum_t (d_t - f(t, \mathbf{a}, N))^2 \right)
\]

Simple uniform priors are chosen for the amplitude parameters, and frequency. The MCMC provides an estimate of the (unnormalized) posterior density:
\[
p(\mathbf{a}|d) \propto p(\mathbf{a})p(d|\mathbf{a})
\]
20 signals (10 shown). Output chains from the MCMC

MCMC takes a quasi-intelligent walk through the parameter space.

Histograms of the post-convergence chains provide estimates of the posterior PDFs.
Reversible Jump MCMC

- Total number of signals, N, is unknown
- Need to apply a non-standard MCMC
- Different N, different model
- Create or annihilate signals
- Split and merge signals
- Also estimate noise level
Splitting and Merging Signals

Merge: Two randomly selected signals $i \neq j$ with parameter vectors $S_i = [A_i^{(1)}, A_i^{(2)}, f_i]$ and $S_j = [A_j^{(1)}, A_j^{(2)}, f_j]$ are merged into a new signal with parameter vector $S_i^* = [A_i^{(1)} + A_j^{(1)}, A_i^{(2)} + A_j^{(2)}, (f_i + f_j)/2]$

Split: For a randomly chosen signal i with parameter vector $S_i = [A_i^{(1)}, A_i^{(2)}, f_i]$ a proposal $u = [u_{A(1)}, u_{A(2)}, u_f]$ is sampled from a distribution q_s and split up into signals with parameter vectors $S_i^* = [A_i^{(1)}/2, A_i^{(2)}/2, f_i] + u$ and $S_j^* = [A_j^{(1)}/2, A_j^{(2)}/2, f_j] - u$
Creating and Annihilating Signals

Annihilation: A randomly selected chosen signal i with $S_i = [A_i^{(1)}, A_i^{(2)}, f_i]$ is simply killed.

Creation: A vector $u = [u_{A(1)}, u_{A(2)}, u_f]$ is sampled from a distribution q_c and the new signal with parameter vector $S_i^* = u$ is added.

Accept or Reject

New parameters and new models are accepted or rejected based on Metropolis-Hastings acceptance methods (also using delayed rejection).
Example with $N=20$ signals, $\theta=2.2$, $T=2\ 000\text{ s}$ of data sampled at $f_s=1\ \text{Hz}$, and max amplitude for a signal of $A=1.0$

MCMC estimates

18 signals

MCMC generated power spectral density better than classical periodogram

Missed 2 signals $f=0.23\ \text{Hz}$ and 0.47Hz
Example with $N=100$ signals, $\gamma=0.75$, $T=10 000$ s of data sampled at $f_s=1$ Hz, and max amplitude for a signal of $A=0.5$

MCMC generated power spectral density is again better than classical periodogram.

We can be more sure about the real values of our parameters if there are fewer combinations that plausibly fit the data.
MCMC Good at Resolving Signals with Similar Frequencies

5 injected signals, $T = 500s$, noise level $= 3.6$, sampled at 1 Hz

<table>
<thead>
<tr>
<th>n</th>
<th>A1</th>
<th>A2</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>-2</td>
<td>-2</td>
<td>0.201</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-1</td>
<td>0.403</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>-1</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Not clear that there are five signals here.
4 of 5 signals found in output

small signal at f=0.15 missed
Example of densities
Estimates of posterior PDFs
A1 A2 frequency
 2 2 0.2
-2 -2 0.201
Example of densities
Estimates of posterior PDFs
A1 A2 frequency
-1 1 0.4
1 -1 0.403
Example of densities

Estimates of posterior PDFs
A1 A2 frequency
-1 1 0.4
1 -1 0.403
Accuracy of Bayes frequency estimation with respect to samples size N

Assuming a signal with amplitude 2 and $\sigma=3.6$
Accuracy of Bayes frequency estimation with respect to amplitude

Assuming a samples size of N=500 and sigma=3.5
What Next

- Get good numbers on scalability: computation time as N and T increase. Appears roughly linear so far with N and with T.

- Realistic Signals. Start coupling this work with the LISA simulator