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Source Confusion for LISA

● LISA sensitivity range 10-5 - 0.1 Hz
● Most abundant source will be close-by White 

Dwarf Binaries:  0.1 mHz to 3 mHz
● Source confusion below 1 mHz
● Resolvable sources above 5 mHz
● 1 mHz to 5 mHz band presents a data 

analysis challenge
● 50 000 to 100 000 potential signals



Markov chain Monte Carlo

● Developed a toy problem  - N sinusoidal  
signals within noise

● Apply a numerical Bayesian technique, a 
Metropolis-Hastings algorithm

● Estimate parameters associated with each 
sinusoid, signal number N and noise level �

● Bayesian – Occam's Razor preference for 
smaller N



Extraction of Parameters for 
Signal

● We assume a simple signal that consists of 
N superposed sinusoidal signals:

We fit this model to the data:



Likelihood and Bayes

Simple uniform priors are chosen for the amplitude
parameters, and frequency. The MCMC provides an
estimate of the (unnormalized) posterior density:



20 signals (10 shown). Output chains from the MCMC

MCMC takes
a quasi-
intelligent
walk through
the parameter
space.

Histograms of 
the post-
convergence
chains provide
estimates of 
the posterior
PDFs



Reversible Jump MCMC

● Total number of signals, N, is unknown
● Need to apply a non-standard MCMC
● Different N, different model
● Create or annihilate signals
● Split and merge signals
● Also estimate noise level �



Splitting and Merging Signals
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Split: For a randomly chosen signal i with parameter vector 
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Creating and Annihilating Signals

Annihilation: A randomly selected chosen signal i with
S

i
=[A

i

(1),A
i

(2),f
i
] is simply killed.

Creation: A vector u=[uA(1), uA(2), uf
] is sampled from

a distribution q
c
 and the new signal with 

parameter vector S
i*
 = u is added.

Accept or Reject
New parameters and new models are accepted or 
rejected based on Metropolis-Hastings acceptance
methods (also using delayed rejection).



Example with N=20 signals, � =2.2, T=2 000s of data sampled at 
f
s
=1 Hz, and max amplitude for a signal of A=1.0

MCMC estimates
18 signals

MCMC generated
power spectral
density better
than classical 
periodogram

Missed 2 signals
f=0.23 Hz and 
0.47Hz



Example with N=100 signals, � =0.75, T=10 000s of data sampled at 
f
s
=1 Hz, and max amplitude for a signal of A=0.5

MCMC generated
power spectral
density is 
again better
than classical 
periodogram

We can be more 
sure about the real 
values of our 
parameters if there
are fewer 
combinations 
that plausibly fit the 
data.

MCMC estimates 97 signals



MCMC Good at Resolving 
Signals with Similar Frequencies
5 injected signals, T = 500s, noise level � =3.6,  sampled at 1 Hz

n A1 A2 frequency

1 2 2 0.2

2 -2 -2 0.201

3 -1 1 0.4

4 1 -1 0.403

5 0 -1 0.15



Not clear that there
are five signals
here.



 

4 of 5 signals
found in output

small signal at
f=0.15 missed



Example of densities
Estimates of posterior PDFs
A1 A2 frequency
 2 2 0.2
-2 -2 0.201



Example of densities
Estimates of posterior PDFs
A1 A2 frequency
-1 1 0.4
 1 -1 0.403



Example of densities
  
Estimates of posterior PDFs
A1 A2 frequency
-1 1 0.4
 1 -1 0.403









What Next

● Get good numbers on scalability: computation 
time as N and T increase. Appears roughly 
linear so far with N and with T.

●

● Realistic Signals. Start coupling this work with 
the LISA simulator


