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The EMRI parameter space is very large - waveforms depend on 17 different
parameters - and expect to observe large numbers of cycles (~ 10°). A search
based on fully coherent matched filtering is thus computationally impossible.

Detection could be achieved using a mixed coherent/incoherent search. A first
cut analysis (Gair et al. 2004) indicated

x Threshold SNR is increased from ~ 15 (fully coherent) to ~ 35, but events
can still be detected to z ~ 1.

* Between ~ 100 and ~ 1000s of events could be observed, depending on the
intrinsic astrophysical rate.
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Search for areas of high power density
by binning using rectangular grids in
the t-f plane.

Could wuse knowledge of source
waveforms to restrict choice of bin size,
but here we consider a blind search over
a range of bin sizes.

For each bin size, find false alarm
probability of loudest excess in the t-f
plane. Minimize over all bin sizes.




Search statistic

For a specified bin size and in the absence of a signal, the power in a given
pixel, p = A p, follows a chi-square distribution with 4 A degrees of freedom,

PX?LA (p < po)-




Search statistic

For a specified bin size and in the absence of a signal, the power in a given
pixel, p = A p, follows a chi-square distribution with 4 A degrees of freedom,

PX?LA (p < po)-

If we drew [ independent samples from this distribution, the maximum would be

l
distributed as P(pmaz < Do) = |:PX421A(p < po)] :




Search statistic

For a specified bin size and in the absence of a signal, the power in a given
pixel, p = A p, follows a chi-square distribution with 4 A degrees of freedom,

PX?LA (p < po)-

If we drew [ independent samples from this distribution, the maximum would be

l
distributed as P(pmaz < Do) = |:PX421A(p < po)] :




Numerical distribution
Maximum of N chi square distributed points
Malximum of II\I/A chi square distribluted pointsI

6.3 6.4 6.5 6.6 6.7
p_0




Search statistic

For a specified bin size and in the absence of a signal, the power in a given
pixel, p = A p, follows a chi-square distribution with 4 A degrees of freedom,

PXZA(p < Po).

If we drew [ independent samples from this distribution, the maximum would be
l

distributed as P(pmaz < Do) = |:PX421A(p < po)] .

In the binned t-f plane, overlap between bins makes statistics more complicated,
but expect to have effectively N/A < | < N. Use Monte Carlo simulations to
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Test case

To estimate the effectiveness of this method, we used a mock LISA data stream
containing a "typical” EMRI event with parameters

x Inspiral of m = 10My BH into a M = 10°M; SMBH with spin a = 0.8 M.
* Used waveform over the last three years of inspiral, with eccentricity e = 0.4,
periapse r, ~ 11M and inclination, ¢ = 45° at the start of observation.

* Source was placed at a fixed, non-special, point on the sky at distances of
d=20.5,1, 1.4 and 2 Gpc.

The inspiral waveform was generated using a numerical kludge technique,
including modulations induced by the detector motion.




Results - source at d = 0.5 Gpc

Nearest likely event is detected with high confidence. Expect 0-2 events with
d < 0.5 Gpc over three years.
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Results - source at d = 1 Gpc

Expect 1-10 events with d < 1 Gpc over three years. Also detected with high
confidence.
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Results - source at d = 1.4 Gpc

Expect 5-40 events with d < 1.4 Gpc over three years. Detected with reasonable
confidence.
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Results - source at d = 2 Gpc

Limit of detectability. Expect 10-100 events with d < 2 Gpc over three years.
Marginal detection.
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Outstanding Issues

Confusion is a very important issue that we have ignored so far. Confusion
sources include resolvable white dwarf binaries, foregrounds from unresolvable
astrophysical sources and overlap with other EMRIs.
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Confusion is a very important issue that we have ignored so far. Confusion
sources include resolvable white dwarf binaries, foregrounds from unresolvable
astrophysical sources and overlap with other EMRIs.

This approach allows event detection, but not parameter determination.
However, it could provide a frequency and frequency drift rate which will
significantly reduce parameter space for matched filtering follow up.

We have assumed that the noise in the t-f plane is gaussian and can be normalised
according to the noise spectral density, S;(f). Non-stationarity (particularly in
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Summary

We have investigated a simple excess power technique for detecting EMRI's in
the LISA data stream as a proof of principle that such methods could be used.

We find that a typical source could be detected up to a distance of ~ 2 Gpc,

which would mean as many as 100 detections by this technique during the
mission.

Could be used as a first pass to find the loudest EMRI events, before following




