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Extreme mass ratio inspirals

• Inspiral of a compact body into a
supermassive black hole.

• Inspirals radiate in the LISA band for
M ∼ 105 − 107M�.

• Complicated gravitational waveforms
encode a map of the spacetime
geometry around spinning black holes.
Uncode this map to probe spacetime
structure - ”holiodesy”.

• The potential scientific impact has
made detection of a significant number
of EMRI events a key LISA science
requirement.
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• The EMRI parameter space is very large - waveforms depend on 17 different
parameters - and expect to observe large numbers of cycles (∼ 105). A search
based on fully coherent matched filtering is thus computationally impossible.

• Detection could be achieved using a mixed coherent/incoherent search. A first
cut analysis (Gair et al. 2004) indicated

? Threshold SNR is increased from ∼ 15 (fully coherent) to ∼ 35, but events
can still be detected to z ∼ 1.

? Between ∼ 100 and ∼ 1000s of events could be observed, depending on the
intrinsic astrophysical rate.

• The semi-coherent search is still computationally expensive and makes maximum
use of available resources (analysis on a ∼ 50 Teraflop computer in real time).

• Valuable to explore other search techniques to use in conjunction with matched
filtering algorithms.
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• A time-frequency analysis is one possible alternative approach to EMRI detection.
To investigate the feasibility of such methods, we have scoped out a very simple
time-frequency algorithm. It is similar to the excess power statistic used in LIGO
data analysis.

• Make simplifying assumptions in first cut - assume a clean data stream (i.e., no
white dwarf binaries) and that we are searching for a single EMRI event.

• Analyse LISA data as follows

? Divide data in time into sections of length T (∼ 2 weeks). Compute SFT’s
and construct normalised power at each time i and frequency j

P (i, j) = 4 dt2 df
|si

j|2

Sh(fj)

? Combine power from two independent data streams.



5

Time-frequency analysis II

t

f

X
X
X

• Search for areas of high power density
by binning using rectangular grids in
the t-f plane.

ρ(i, j) =

nt
2∑

k=−nt
2

nf
2∑

l=−
nf
2

P (i + k, j + l)
nt nf



5

Time-frequency analysis II

t

f

X
X
X

• Search for areas of high power density
by binning using rectangular grids in
the t-f plane.

ρ(i, j) =

nt
2∑

k=−nt
2

nf
2∑

l=−
nf
2

P (i + k, j + l)
nt nf

• Could use knowledge of source
waveforms to restrict choice of bin size,
but here we consider a blind search over
a range of bin sizes.



5

Time-frequency analysis II

t

f

X
X
X

• Search for areas of high power density
by binning using rectangular grids in
the t-f plane.

ρ(i, j) =

nt
2∑

k=−nt
2

nf
2∑

l=−
nf
2

P (i + k, j + l)
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• Could use knowledge of source
waveforms to restrict choice of bin size,
but here we consider a blind search over
a range of bin sizes.

• For each bin size, find false alarm
probability of loudest excess in the t-f
plane. Minimize over all bin sizes.
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Search statistic

• For a specified bin size and in the absence of a signal, the power in a given
pixel, p = A ρ, follows a chi-square distribution with 4 A degrees of freedom,
Pχ2

4A
(p < p0).

• If we drew l independent samples from this distribution, the maximum would be

distributed as P (pmax < p0) =
[
Pχ2

4A
(p < p0)

]l

.

• In the binned t-f plane, overlap between bins makes statistics more complicated,
but expect to have effectively N/A < l < N . Use Monte Carlo simulations to
compute Pi(p0) = P ((pmax)i < p0) numerically for each bin type i.

• Also use Monte Carlo simulation to compute distribution of final search statistic,
FAPmin = min

{
1− Pi((pmax)obs

i )
}
. If all M bin sizes were independent, then

P (FAPmin < Y ) = 1−(1−Y )M . Simulations indicate we should set a threshold
FAPmin ≈ 10−4 to give the search an overall false alarm probability of 1%.



7

Test case

• To estimate the effectiveness of this method, we used a mock LISA data stream
containing a ”typical” EMRI event with parameters

? Inspiral of m = 10M� BH into a M = 106M� SMBH with spin a = 0.8M .



7

Test case

• To estimate the effectiveness of this method, we used a mock LISA data stream
containing a ”typical” EMRI event with parameters

? Inspiral of m = 10M� BH into a M = 106M� SMBH with spin a = 0.8M .
? Used waveform over the last three years of inspiral, with eccentricity e = 0.4,

periapse rp ≈ 11M and inclination, ι = 45o at the start of observation.



7

Test case

• To estimate the effectiveness of this method, we used a mock LISA data stream
containing a ”typical” EMRI event with parameters

? Inspiral of m = 10M� BH into a M = 106M� SMBH with spin a = 0.8M .
? Used waveform over the last three years of inspiral, with eccentricity e = 0.4,

periapse rp ≈ 11M and inclination, ι = 45o at the start of observation.
? Source was placed at a fixed, non-special, point on the sky at distances of

d = 0.5, 1, 1.4 and 2 Gpc.



7

Test case

• To estimate the effectiveness of this method, we used a mock LISA data stream
containing a ”typical” EMRI event with parameters

? Inspiral of m = 10M� BH into a M = 106M� SMBH with spin a = 0.8M .
? Used waveform over the last three years of inspiral, with eccentricity e = 0.4,

periapse rp ≈ 11M and inclination, ι = 45o at the start of observation.
? Source was placed at a fixed, non-special, point on the sky at distances of

d = 0.5, 1, 1.4 and 2 Gpc.

• The inspiral waveform was generated using a numerical kludge technique,
including modulations induced by the detector motion.



7

Test case

• To estimate the effectiveness of this method, we used a mock LISA data stream
containing a ”typical” EMRI event with parameters

? Inspiral of m = 10M� BH into a M = 106M� SMBH with spin a = 0.8M .
? Used waveform over the last three years of inspiral, with eccentricity e = 0.4,

periapse rp ≈ 11M and inclination, ι = 45o at the start of observation.
? Source was placed at a fixed, non-special, point on the sky at distances of

d = 0.5, 1, 1.4 and 2 Gpc.

• The inspiral waveform was generated using a numerical kludge technique,
including modulations induced by the detector motion.

• This source would have a matched filtering SNR of ∼ 120 at 1 Gpc and could
be detected out to z > 1 using the semi-coherent technique outlined previously.



7

Test case

• To estimate the effectiveness of this method, we used a mock LISA data stream
containing a ”typical” EMRI event with parameters

? Inspiral of m = 10M� BH into a M = 106M� SMBH with spin a = 0.8M .
? Used waveform over the last three years of inspiral, with eccentricity e = 0.4,

periapse rp ≈ 11M and inclination, ι = 45o at the start of observation.
? Source was placed at a fixed, non-special, point on the sky at distances of

d = 0.5, 1, 1.4 and 2 Gpc.

• The inspiral waveform was generated using a numerical kludge technique,
including modulations induced by the detector motion.

• This source would have a matched filtering SNR of ∼ 120 at 1 Gpc and could
be detected out to z > 1 using the semi-coherent technique outlined previously.

• Using the time-frequency analysis, the source could be detected out to d ∼ 2
Gpc, giving a maximum event rate ∼ 100 over three years.
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Results - source at d = 0.5 Gpc

• Nearest likely event is detected with high confidence. Expect 0-2 events with
d < 0.5 Gpc over three years.
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Results - source at d = 1 Gpc

• Expect 1-10 events with d < 1 Gpc over three years. Also detected with high
confidence.
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Results - source at d = 1.4 Gpc

• Expect 5-40 events with d < 1.4 Gpc over three years. Detected with reasonable
confidence.
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Results - source at d = 2 Gpc

• Limit of detectability. Expect 10-100 events with d < 2 Gpc over three years.
Marginal detection.
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• Confusion is a very important issue that we have ignored so far. Confusion
sources include resolvable white dwarf binaries, foregrounds from unresolvable
astrophysical sources and overlap with other EMRIs.

• This approach allows event detection, but not parameter determination.
However, it could provide a frequency and frequency drift rate which will
significantly reduce parameter space for matched filtering follow up.

• We have assumed that the noise in the t-f plane is gaussian and can be normalised
according to the noise spectral density, Sh(f). Non-stationarity (particularly in
astrophysical foregrounds) complicates noise properties.

• The algorithm has not been tuned (e.g., restrict to particular box sizes, choose
optimal T etc.). Must assess efficiency with other and more realistic injected
waveforms.
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Future developments

• Could use time frequency methods to distinguish white dwarf binaries (no change
in frequency as a function of time).

• Time-frequency methods might also be a way to detect unmodelled sources
(e.g., non black hole EMRIs).

• Can investigate more sophisticated search algorithms (e.g., different pixel shapes,
Hough transform) that exploit the distinctive shapes of EMRI vs. binary tracks.

• Could restrict search to bands in frequency to avoid some confusion problems.
Should attempt to understand how confusion in these algorithms compares to
other techniques.



14

Summary

• We have investigated a simple excess power technique for detecting EMRI’s in
the LISA data stream as a proof of principle that such methods could be used.



14

Summary

• We have investigated a simple excess power technique for detecting EMRI’s in
the LISA data stream as a proof of principle that such methods could be used.

• We find that a typical source could be detected up to a distance of ∼ 2 Gpc,
which would mean as many as 100 detections by this technique during the
mission.



14

Summary

• We have investigated a simple excess power technique for detecting EMRI’s in
the LISA data stream as a proof of principle that such methods could be used.

• We find that a typical source could be detected up to a distance of ∼ 2 Gpc,
which would mean as many as 100 detections by this technique during the
mission.

• Could be used as a first pass to find the loudest EMRI events, before following
up with matched filtering to estimate parameters and find weaker signals.



14

Summary

• We have investigated a simple excess power technique for detecting EMRI’s in
the LISA data stream as a proof of principle that such methods could be used.

• We find that a typical source could be detected up to a distance of ∼ 2 Gpc,
which would mean as many as 100 detections by this technique during the
mission.

• Could be used as a first pass to find the loudest EMRI events, before following
up with matched filtering to estimate parameters and find weaker signals.

• Algorithm can be developed and improved in many ways and confusion issues
must be carefully examined. Nonetheless, it is promising that even this simple
algorithm could be useful for data analysis.


