

Upper Limits from LIGO and TAMA on Gravitational-Wave Bursts

Patrick Sutton LIGO Laboratory, Caltech for the LIGO and TAMA Collaborations

- Collaborative Searches
- LIGO-TAMA Network
- Analysis Overview
- Upper Limits & Outlook

 Most confident detection and maximum exploitation of gravitational waves may come from cooperative analyses by the various observatories:

- » Reduction in false alarm rate due to extra coincidence (~1/century)
- Increase in total usable observation time
- » Extract sky direction, polarization with 3+ sites.
- » Independent hardware, software, and algorithms minimize chances of error.

LIGO

• Unfortunately, these benefits don't come without hard work. Physical and technical challenges abound.

- » Different detectors see:
- » ... different polarization combinations.
- » ... different parts of the sky.
- » ... different frequency bands.
- » Different search algorithms, file formats, sampling frequencies, etc.

• Many of these benefits and costs are evident in the LIGO-TAMA joint bursts search.

LIGO-G040527-00-Z

LIGO-TAMA Timeline

- GWDAW 7, 2002: LIGO & TAMA sign agreement for joint analysis of data for gravitational-wave transients.
- Summer 2003: Began joint bursts search using Science Run 2 / Data Taking Run 8 data (Feb – Apr 2003).
 - » Trigger-based coincidence analysis.
 - » Look for generic short-duration GWBs at high frequencies (~1kHz).
 - Complementary to TAMA-only DT8 search & LIGO-only S2 search in 100-1100Hz
- Fall 2003: Inspiral & GRB 030329 analyses started (in progress).
 - » Inspiral session: Takahashi & Fairhurst

LIGO-TAMA Network

Best *joint* sensitivity near minimum of noise envelope

Focus on [700,2000]Hz

LIGO-TAMA Network

S2/DT8 Duty Cycles

• Data sets analyzed (3+ IFOs):

H1-H2-L1-T1	15%	215hr
H1-H2-L1- n T1	3%	46hr
H1-H2 -n L1-T1	23%	324hr
total	41%	585hr

(after data-quality cuts)

 $nT1 \equiv T1$ not operating

 \mathbf{n} L1 = L1 not operating

- LIGO-TAMA has *double* the total usable data set of LIGO alone
 - » Better chance of "getting lucky" in a search
 - » Cut rate upper limits in half

Analysis Procedure

Trigger Generation

- » Prefiltering with high-pass, linear-predictor error filters.
- » Construct time-frequency spectrogram, trigger on clusters of pixels which are "loud" compared to average noise level.
- » Peak time, duration, frequency, bandwidth, SNR; keep only triggers overlapping [700,2000]Hz.
- » Sylvestre, PRD 66 102004 (2002).

• TAMA: Excess-Power algorithm:

- » Prefiltering for line removal.
- » Construct spectrogram, normalize by background, sum over fixed set of frequency bins in [230, 2500]Hz at each time step. Trigger if SNR>4.
- » Combine contiguous segments above threshold into single trigger with peak time time, duration, SNR.
- » Vetoes:

- glitches in light intensity in power recycling cavity
- time-scale veto to distinguish short-duration GWBs from detector nonstationarity
- » Ando et al., gr-qc/0411027, Anderson, et al., PRD 63 042003 (2001)

- Require candidate GWBs to be seen in all detectors simultaneously.
 - » Timing accuracy of ~1ms for short signals (from simulations).
 - » Use coincidence window = light travel time + ~10ms safety margin.
- R-Statistic: LIGO coincidences tested for waveform consistency.
 - » Cross-correlation test (Cadonati, CQG 21 S1695 (2004)).
 - » Strong reduction of false alarm rate (>90%) with no loss of efficiency
- Estimate false alarm rate using unphysical time shifts.
 - » LIGO 2-site network = 47 lags in (-115s,+115s)
 - » LIGO-TAMA 3-site network = 47^2 = 2209 lags in (-115s,+115s).

Simulations

- Inject simulated GWBs to tune analysis and estimate network sensitivity.
 - » Procedure: Simulated h(t) signals written to frame files, added to raw data streams. Include effects of antenna response, sky position, and polarization.
 - » Signals: Use Gaussian-modulated sinusoids for this first analysis.
 - Q = 8.9, f₀ = {700, 849, 1053, 1304, 1615, 2000}Hz
 - Isotropic sky distribution, random linear polarization

- Tune for best efficiency at each false rate:
 - » Select TFClusters, Power thresholds to match efficiencies across detectors
 - Similar in spirit to IGEC procedure (Astone *et al.*, PRD 68 022001 (2003))
 - » Select r-statistic threshold to ensure false rate for << 1 event over livetime (efficiencies not affected).
- Blind analysis.

LIGO

» Set all thresholds, etc. by looking only at time-shifted data (no GWBs) or with 10% subset of data ("playground") which is not used for upper limits

Y-axis: sine-Gaussian amplitude at which detection probability is 0.5 (with frequency, sky & polarization averaging)

LIGO

Chosen single-IFO operating points

Efficiency vs False Rate

LIGO-TAMA network performance.

Plotted false rates are upper limits (no surviving coincidences from time lags).

O(1/century) false rates achievable.

Network Efficiency

From sine-Gaussian simulations (with sky & polarization averaging)

Different network combinations have similar efficiency (factor ~2 in 50% point).

LIGO-G040527-00-Z

Preliminary

• No surviving coincidences (no GWB candidates).

Network	T (day)	N _{bck}	R _{90%} (1/day)*	h _{50%} (Hz ^{-1/2})
H1-H2-L1-T1	6.9	<5e-4	0.35	2.1x10 ⁻¹⁹
H1-H2- n L1-T1	10.7	<0.023	0.23	1.7x10 ⁻¹⁹
H1-H2-L1- n T1	2.1	<0.023	1.14	0.97x10 ⁻¹⁹
Combined LIGO-TAMA	19.7	<0.046	0.12	1.8x10 ⁻¹⁹

*Set upper limits using Feldman & Cousins, PRD **57** 3873 (1998), with N_{bck}=0 (conservative).

LIGO-G040527-00-Z

Sutton GWDAW9 2004.12.17

R vs h Upper Limits

Upper Limit Comparisons

Preliminary

Network	T (day)	R _{90%} (1/day)	band (Hz)
LIGO-TAMA	19.7	0.12	700-2000
LIGO-only	10.0	0.24-0.43	100-1100
IGEC*	707.9	0.0041	694-930

*5-bar search from 1997-2000, Astone *et al.*, PRD **68** 022001 (2003). Sensitivity restricted to signals with significant power at resonant frequencies of bars (lowest 694Hz, highest 930Hz).

LIGO

Bursts Search Summary

- TAMA & LIGO have conducted the first 4-IFO search for GWBs.
 - » High-frequency search complementary to LIGO-only search at low frequencies.
- No GWB candidates were found.
 - » Rate upper limit of 0.12/day.
 - » $h_{rss}^{50\%} = 1.8 \times 10^{-19} Hz^{-1/2}$ averaged over networks, analysis band.
 - » Paper in preparation.
- Saw both costs and benefits from joint analysis
 - » Reduction of false alarm rate (4X)
 - » Increase in observation time (3X & 4X)
 - » Sensitivity restricted to common (high-frequency) band.
 - » Technical hurdles must work harder even for straightforward search.
 - » Think benefits are worth effort.
- Exploring possible joint S3+ search with LIGO, TAMA, GEO.
 - » Examining scientific value of joint search.
 - » Considering ways to improve on S2/DT8 analysis to take fuller advantage of network.

Preliminary

Network Efficiency, by f_0

Sutton GWDAW9 2004.12.17

LIGO

LIGO-G040527-00-Z

Efficiency of 4X detection, by central frequency of signal

Sensitivity ~constant across band.

23

LIGO Net

Network Efficiency, by f₀

Efficiency of LIGO 3X detection, by central frequency of signal

Improvement at lower frequencies – TAMA limits sensitivity there.