Status of the LIGO-ALLEGRO Stochastic Background Search

John T. Whelan

jtwhelan@loyno.edu

on behalf of the LIGO Scientific Collaboration

9th Gravitational Wave Data Analysis Workshop
2004 December 16

LIGO-G040525-01-Z
Corrected version using v1.5 ALLEGRO calibration
Outline

I Background/Motivation for LLO-ALLEGRO Search
- Overlap Reduction Function
- LLO-ALLEGRO Pair (proximity, overlap modulation)
- Technical Considerations (sampling, heterodyning, calibration)

II Status of S2 Analysis
- Data Volume by Orientation
- Data Quality
- Expected Sensitivity
Sensitivity to Stochastic GW Backgrounds

- Optimally filtered CC statistic

\[Y = \int df \tilde{s}_1^*(f) \tilde{Q}(f) \tilde{s}_2(f) \]

- Optimal filter \(\tilde{Q}(f) \propto f^{-3} \Omega_{GW}(f) \gamma_{12}(f) \)

 \[\frac{P_1(f)P_2(f)}{P_1(f)P_2(f)} \]

 (Initial analyses assume \(\Omega_{GW}(f) \) constant across band)

- Optimally filtered cross-correlation method has \(\Omega_{GW} \) sensitivity

\[\sigma_\Omega \propto \left(T \int \frac{df}{f^6} \frac{\gamma_{12}^2(f)}{P_1(f)P_2(f)} \right)^{-1/2} \]

- Significant contributions when
 - detector noise power spectra \(P_1(f), P_2(f) \) small
 - overlap reduction function \(\gamma_{12}(f) \) (geom correction) near \(\pm 1 \)
Overlap Reduction Function

\[\gamma_{12}(f) = d_{1ab} d_{2cd} \frac{5}{4\pi} \int \int_{S^2} d^2 \Omega \ P^{TT}_{ab}(\hat{\Omega}) e^{i2\pi f \hat{\Omega} \cdot \Delta \vec{x}/c} \]

Depends on alignment of detectors (polarization sensitivity)
Frequency dependence from cancellations when \(\lambda \lesssim \) distance
\(\rightarrow \) Widely separated detectors less sensitive at high frequencies

This wave drives LHO & GEO out of phase

LHO

GEO

max

zero

min
Overlap Reduction Function

\[\gamma_{12}(f) = d_{1ab}d_{2cd} \frac{5}{4\pi} \int \int_{S^2} d^2 \Omega \ P_{TT}^{ab}(\Omega) e^{i2\pi f \hat{\Omega} \cdot \Delta \vec{x}/c} \]

Depends on alignment of detectors (polarization sensitivity)
Frequency dependence from cancellations when \(\lambda \lesssim \) distance
→ Widely separated detectors less sensitive at high frequencies

This wave (same \(\lambda \)) drives LHO & GEO in phase
Overlap Reduction Function

Frequency (Hz)

LLO−LHO
LLO−ALLEGRO (N72° E)
Overlap Reduction Function

- LLO–LHO
- LLO–ALLEGRO (N72° E) "XARM"
- LLO–ALLEGRO (N18° W) "YARM"
- LLO–ALLEGRO (N63° W) "NULL"
LLO-ALLEGRO Correlations

- Only ~ 40 km apart $\rightarrow \gamma(900\,\text{Hz}) \approx 95\%$ for best alignment
 Sensitive in different freq band from LLO/LHO pair

- Unique experimental technique: rotate ALLEGRO to callibrate cross-correlated noise (Finn & Lazzarini)
 - XARM & YARM orientations have opposite GW sign
 \rightarrow can “cancel” out CC noise by subtracting results
 - NULL orientation has no expected GW signal
 \rightarrow “off-source” measurement of CC noise

- Currently analyzing S2 (2003 Feb 14-Apr 14) data; ALLEGRO was offline for S3 (2003 Oct 31-2004 Jan 9), now running again; Further work planned for S4 & beyond
LLO-ALLEGRO: Technical Considerations

- **LIGO** data digitally downsampled $16384\text{ Hz} \rightarrow 4096\text{ Hz}
- **ALLEGRO** data heterodyned at 899 Hz & sampled at 250 Hz
- Time domain resampling undesirable: $2^9/5^3$ sampling ratio → work in freq domain w/overlapping frequencies

- Uncalibrated **ALLEGRO** data have sharper spectral features → Work w/calibrated heterodyned strain “$h(t)$” for **ALLEGRO**

- Calibrating **ALLEGRO** data is major undertaking
 (Coherent analysis requires more precise calibration than before)
 See [McHugh talk](#) for more details
LLO-ALLEGRO data from LIGO S2 Run

- Analysis uses sliding PSD estimator & σ ratio cut non-overlapping Tukey windows

- $\sim 10\%$ of data set aside as “playground”

- Non-PG data divided into 60s segments; 3 orientations:
 - “NULL” ($0.028 < \gamma(f) < 0.034$): 3328 min after cuts
 “off-source” data useful for data quality & cross-checks
 - “YARM” ($-0.89 > \gamma(f) > -0.91$): 1654 min after cuts
 - “XARM” ($0.95 < \gamma(f) < 0.96$): 1547 min after cuts

- Projected $h_{100}^2\Omega$ sensitivity using YARM & XARM data: ~ 14
Avg Calibrated ASD from S2 Playground

Frequency (Hz)
Strain (Hz\(^{-1/2}\))
LLO ASD
ALLEGRO ASD
Spectrum for Ω(f)=14
Sensitivity by Segment for YARM Jobs

Days after 2003−Feb−14

σ_Ω^2 vs. Days after 2003−Feb−14

1.6×10^{-5}
LLO-ALLEGRO: Summary

- First stochastic measurement correlating bar w/ifo data
- Probes higher frequency band than LLO-LHO: $\sim 850 - 950$ Hz
- Rotation of ALLEGRO modulates stochastic response (data taken in 3 orientations during S2)
- Freq-domain method seems to solve sampling rate issues
 \exists more careful analytic demonstration
- Analyzing S2 data; next coincident run is S4
- Expected S2 sensitivity from ~ 54 hrs of data $h_{100}^2 \Omega_{GW}(f) \sim 14$