Ruijsenaars duality in the framework of symplectic reduction

László Fehér, KFKI RMKI, Budapest and University of Szeged Talk based on joint work with Ctirad Klimčík, IML, Marseille References: arXiv:0809.1509, 0901.1983, 0906.4198, 1005.4531 [math-ph]

- Two integrable many-body systems are dual to each other if the action variables of system (i) are the particle positions of system (ii), and vice versa. Underlying phase spaces are symplectomorphic.
- First example is the self-duality of the rational Calogero system. Interpreted in terms of symplectic reduction by Kazhdan, Kostant and Sternberg (1978).
- Duality was discovered and explored by Ruijsenaars (1988-95) in his direct construction of action-angle variables for Calogero-Sutherland type systems and their 'relativistic' deformations.

The simplest example

Rational Calogero system:
$$H_{\text{Cal}}(q, p) = \frac{1}{2} \sum_{k=1}^{n} p_k^2 + \frac{1}{2} \sum_{j \neq k} \frac{x^2}{(q_k - q_j)^2}$$

Symplectic reduction: Consider phase space $T^*iu(n) \simeq iu(n) \times iu(n) := \{(Q,P)\}$ with two families of 'free' Hamiltonians $\{\operatorname{tr}(Q^k)\}$ and $\{\operatorname{tr}(P^k)\}$. Reduce by the adjoint action of U(n) using the moment map constraint

$$[Q, P] = \mu(x) := ix \sum_{j \neq k} E_{j,k}$$

This yields the self-dual Calogero system (OP [76], KKS [78]):

gauge slice (i):
$$Q = q := \operatorname{diag}(q_1, \ldots, q_n), \quad q_1 > \cdots > q_n$$
, with $p := \operatorname{diag}(p_1, \ldots, p_n)$

$$P = p + \mathrm{i} x \sum_{j \neq k} \frac{E_{jk}}{q_j - q_k} \equiv L_{\mathsf{Cal}}(q, p) \quad \mathsf{Lax \ matrix}, \quad \mathsf{tr} \left(dP \wedge dQ \right) = \sum_{k=1}^n dp_k \wedge dq_k$$

gauge slice (ii): $P = \hat{p} := \operatorname{diag}(\hat{p}_1, \dots, \hat{p}_n), \quad \hat{p}_1 > \dots > \hat{p}_n, \text{ with } \hat{q} := \operatorname{diag}(\hat{q}_1, \dots, \hat{q}_n)$

$$Q = -L_{\mathsf{Cal}}(\hat{p}, \hat{q})$$
 dual Lax matrix, $\operatorname{tr}(dP \wedge dQ) = \sum_{k=1}^{n} d\hat{q}_k \wedge d\hat{p}_k$.

The alternative gauge slices give two models of the reduced phase space. Their natural symplectomorphism is the 'action-angle map' for the two Calogero systems: alias the duality map. Ruijsenaars hinted at analogous picture in general.

A 'dual pair' of integrable many-body systems

Hyperbolic Sutherland system (1971):

$$H_{\text{hyp-Suth}}(q,p) = \frac{1}{2} \sum_{k=1}^{n} p_k^2 + \frac{x^2}{2} \sum_{j \neq k} \frac{1}{\sinh^2(q_j - q_k)}$$

Basic Poisson brackets: $\{q_i, p_j\} = \delta_{i,j}$, x: non-zero, real constant.

Rational Ruijsenaars-Schneider system (1986):

$$H_{\mathsf{rat-RS}}(\widehat{p},\widehat{q}) = \sum_{k=1}^{n} \cosh(\widehat{q}_k) \prod_{j \neq k} \left[1 + \frac{x^2}{(\widehat{p}_k - \widehat{p}_j)^2} \right]^{\frac{1}{2}}$$

Poisson brackets: $\{\hat{p}_i, \hat{q}_j\} = \delta_{i,j}$ (\hat{p}_i are RS 'particle positions').

Systems describe n 'particles' moving on the line, and are integrable.

Ruijsenaars (1988) constructed 'duality symplectomorphism' (actionangle map) between the underlying phase spaces.

Local description of two other dual pairs

Standard trigonometric Ruijsenaars-Schneider [86] system:

$$H_{\text{trigo-RS}} = \sum_{k=1}^{n} (\cosh p_k) \prod_{j \neq k} \left[1 + \frac{\sinh^2 x}{\sin^2 (q_k - q_j)} \right]^{\frac{1}{2}}$$

It is a relativistic generalization (here with c=1) of

$$H_{\text{trigo-Suth}} = \frac{1}{2} \sum_{k=1}^{n} p_k^2 + \frac{x^2}{2} \sum_{j \neq k} \frac{1}{\sin^2(q_k - q_j)}$$

The dual systems (Ruijsenaars [88,95]):

$$\widehat{H}_{\text{trigo-RS}} = \sum_{k=1}^{n} (\cos \widehat{q}_k) \prod_{j \neq k} \left[1 - \frac{\sinh^2 x}{\sinh^2 (\widehat{p}_k - \widehat{p}_j)} \right]^{\frac{1}{2}}$$

$$\widetilde{H}_{\mathsf{rat-RS}} = \sum_{k=1}^{n} (\cos \widehat{q}_k) \prod_{j \neq k} \left[1 - \frac{x^2}{(\widehat{p}_k - \widehat{p}_j)^2} \right]^{\frac{1}{2}}$$

 $H_{\text{trigo-RS}}$, $\widehat{H}_{\text{trigo-RS}}$: different real forms of complex trigo RS.

Further self-dual systems

Compactified trigonometric RS (III_b) system, locally given by

$$H_{\text{compact-RS}} = \sum_{k=1}^{n} (\cos p_k) \prod_{j \neq k} \left[1 - \frac{\sin^2 x}{\sin^2 (q_k - q_j)} \right]^{\frac{1}{2}}$$

Hyperbolic Ruijsenaars-Schneider system:

$$H_{\text{hyp-RS}} = \sum_{k=1}^{n} (\cosh p_k) \prod_{j \neq k} \left[1 + \frac{\sinh^2 x}{\sinh^2 (q_k - q_j)} \right]^{\frac{1}{2}}$$

- Our purpose is to derive all of Ruijsenaars' dualities by reductions of suitable finite-dimensional, real phase spaces. Then study new cases: systems with two types of particles, BC(n) systems etc.
- Today, I first overview the non-self-dual cases and then mention open problems.

Duality from symplectic reduction: the basic idea

Start with 'big phase space', of group theoretic origin, equipped with *two* commuting families of 'canonical free Hamiltonians'.

Apply suitable *single* symplectic reduction to the big phase space and construct *two* 'natural' models of the reduced phase space.

The two families of 'free' Hamiltonians turn into interesting **many-body Hamiltonians** and **particle-position variables** in terms of both models. Their rôle is *interchanged* in the two models.

The natural symplectomorphism between the two models of the reduced phase space yields the 'duality symplectomorphism'.

Motivated by KKS [78], the above 'scenario' was described by Gorsky and Nekrasov in the nineties (see e.g. Fock-Gorsky-Nekrasov-Roubtsov [2000]). They focused on local questions working mostly with infinite-dimensional phase spaces and in a complex holomorphic setting. Global structure of real phase spaces is relevant.

Duality between hyperbolic Sutherland and rational RS

Take real Lie algebra $gl(n,\mathbb{C})$ with bilinear form $\langle X,Y\rangle:=\Re \operatorname{tr}(XY)$, and minimal coadjoint orbit of U(n): $\mathcal{O}_x:=\{\xi=\operatorname{i} x(\mathbf{1}_n-vv^\dagger)\,|\,v\in\mathbb{C}^n,\,|v|^2=n\}$. Start with the 'big phase space' (M,Ω_M) :

$$M := T^*GL(n, \mathbb{C}) \times \mathcal{O}_x \simeq (GL(n, \mathbb{C}) \times gl(n, \mathbb{C})) \times \mathcal{O}_x = \{(g, J^R, \xi)\}.$$

Introduce matrix functions $\mathcal L$ and $\widehat{\mathcal L}$ on M by

$$\mathcal{L}(g, J^R, \xi) := J^R$$
 and $\widehat{\mathcal{L}}(g, J^R, \xi) := gg^{\dagger}$.

These 'unreduced Lax matrices' generate 'canonical free Hamiltonians'

$$H_k := \frac{1}{k} \Re \operatorname{tr}(\mathcal{L}^k), \qquad \widehat{H}_{\pm k} := \pm \frac{1}{2k} \operatorname{tr}(\widehat{\mathcal{L}}^k), \qquad k = 1, \dots, n$$

We shall reduce by symmetry group

$$K := U(n) \times U(n),$$

where $(\eta_L, \eta_R) \in K$ acts on M by symplectomorphism

$$\Psi_{\eta_L,\eta_R}: (g,J^R,\xi) \mapsto (\eta_L g \eta_R^{-1}, \eta_R J^R \eta_R^{-1}, \eta_L \xi \eta_L^{-1})$$

generated by moment map

$$\Phi: M \to u(n) \oplus u(n), \qquad \Phi(g, J^R) = ((gJ^Rg^{-1})_{u(n)} + \xi, -J^R_{u(n)})$$

Use **two** models of **the** reduced phase space: $M_{\text{red}} := M//_0 K \equiv \Phi^{-1}(0)/K$.

Consider the Weyl chamber: $\mathcal{C}:=\{q\in\mathbb{R}^n\,|\,q_1>q_2>\cdots>q_n\}.$ $T^*\mathcal{C}\simeq\mathcal{C}\times\mathbb{R}^n=\{(q,p)\}$ has Darboux form $\Omega_{T^*\mathcal{C}}=\sum_k dp_k\wedge dq_k$. Define Hermitian matrix function L on $T^*\mathcal{C}$ by

$$L(q,p)_{jk} := p_j \delta_{jk} - i(1 - \delta_{jk}) \frac{x}{\sinh(q_j - q_k)}$$

L is the standard Lax matrix of the hyperbolic Sutherland model.

Next, denote the elements of $T^*\mathcal{C} = \mathcal{C} \times \mathbb{R}^n$ as pairs (\hat{p}, \hat{q}) . Define (Hermitian, positive definite) matrix-function \hat{L} on $T^*\mathcal{C}$ by

$$\widehat{L}(\widehat{p},\widehat{q})_{jk} = u_j(\widehat{p},\widehat{q}) \left[\frac{\mathrm{i}x}{\mathrm{i}x + (\widehat{p}_j - \widehat{p}_k)} \right] u_k(\widehat{p},\widehat{q}),$$

$$u_j(\widehat{p},\widehat{q}) := e^{-\widehat{q}_j/2} \prod_{m \neq j} \left[1 + \frac{x^2}{(\widehat{p}_j - \widehat{p}_m)^2} \right]^{\frac{1}{4}}, \quad j = 1, \dots, n.$$

Then define \mathbb{R}^n -valued function

$$v(\hat{p},\hat{q}) := \hat{L}(\hat{p},\hat{q})^{-\frac{1}{2}}u(\hat{p},\hat{q})$$
 with $u = (u_1,\ldots,u_n)^T$.

Finally, introduce the \mathcal{O}_x -valued function

$$\xi(\hat{p},\hat{q}) := \xi(v(\hat{p},\hat{q})) = ix(\mathbf{1}_n - v(\hat{p},\hat{q})v(\hat{p},\hat{q})^{\dagger})$$

 \widehat{L} is the standard Lax matrix of the rational Ruijsenaars-Schneider system.

The Sutherland gauge slice S: The manifold S defined by

$$S := \{ (e^q, L(q, p), -\mu(x)) \mid (q, p) \in \mathcal{C} \times \mathbb{R}^n \}$$

is a **global cross section** of the gauge orbits in $\Phi^{-1}(0)$. In the coordinates q, p on S the reduced symplectic form reads $\sum_k dp_k \wedge dq_k$. Thus, the symplectic manifold $(S, \sum_k dp_k \wedge dq_k) \simeq (T^*\mathcal{C}, \Omega_{T^*\mathcal{C}})$ is a model of the reduced phase space.

• Goes back to Olshanetsky-Perelomov [76], Kazhdan-Kostant-Sternberg [78].

The Ruijsenaars gauge slice \hat{S} : The manifold \hat{S} defined by

$$\widehat{S} := \{ (\widehat{L}(\widehat{p}, \widehat{q})^{\frac{1}{2}}, 2\widehat{p}, \xi(\widehat{p}, \widehat{q})) \mid (\widehat{p}, \widehat{q}) \in \mathcal{C} \times \mathbb{R}^n \}$$

is a **global cross section** of the gauge orbits in $\Phi^{-1}(0)$. In terms of the coordinates \hat{p} , \hat{q} on \hat{S} the reduced symplectic form is $\sum_k d\hat{q}_k \wedge d\hat{p}_k$. Hence, the symplectic manifold $(\hat{S}, \sum_k d\hat{q}_k \wedge d\hat{p}_k) \simeq (T^*\mathcal{C}, \Omega_{T^*\mathcal{C}})$ is a model of the reduced phase space.

• We proved in arXiv:0901.1983: Gauge transformation between the two gauge slices is Ruijsenaars' duality symplectomorphism.

How to obtain the trigonometric Sutherland systems and their Ruijsenaars duals?

Consider cotangent bundle $T^*U(n)$ of U(n) (in right-trivialization):

$$T^*U(n) = \{(g, J_L) \mid g \in U(n), J_L \in u(n)^* \simeq u(n)\}$$

It carries the natural symplectic form

$$\Omega(g, J_L) = d \operatorname{tr} (J_L dg g^{-1})$$

and 'canonical free Hamiltonians' $\{H_k\}$ and $\{\widehat{H}_{\pm k}\}$ defined by

$$H_k(g,J_L) := \frac{1}{k} \mathrm{tr} \, (-\mathrm{i} J_L)^k, \quad \widehat{H}_k(g,J_L) := \frac{1}{k} \mathrm{tr} \, (g^k + g^{-k}), \quad \widehat{H}_{-k}(g,J_L) := \frac{1}{\mathrm{i} k} \mathrm{tr} \, (g^k - g^{-k})$$

- One can write down their Hamiltonian flows explicitly.
- They are invariant under the adjoint action of U(n) on $T^*U(n)$:

$$\eta \triangleright (g, J_L) = (\eta g \eta^{-1}, \eta J_L \eta^{-1}) \qquad \forall \eta \in U(n),$$

generated by the moment map $J: T^*U(n) \to u(n)^*$ given by

$$J(g, J_L) = J_L + J_R$$
 with $J_R(g, J_L) := -g^{-1}J_Lg$.

J is sum of moment maps generating left/right multiplication.

KKS [78] found that the moment map constraint $J=\mu(x)$ produces the trigonometric Sutherland system from the Hamiltonian system describing the free particle on U(n): $(T^*U(n), \Omega, H_2)$. The Hamiltonians $\{H_k\}$ give action variables of Sutherland system (and $\{\hat{H}_{\pm k}\}$ become in effect Sutherland particle positions).

It can be shown that using another model of the reduced phase space $\{\widehat{H}_{\pm k}\}$ yield the commuting Hamiltonians of the Ruijsenaars dual of the Sutherland system (and $\{H_k\}$ become in effect the dual particle positions).

Recently in 1005.4531 [math-ph] (V. Ayadi and L.F.: Trigonometric Sutherland systems and their Ruijsenaars duals from symplectic reduction), we considered covering homomorphisms

$$G_2 := \mathbb{R} \times SU(n) \longrightarrow G_1 := U(1) \times SU(n) \longrightarrow G := U(n)$$

and 'KKS reductions' of the 3 cotangent bundles by the effective symmetry group

$$\bar{G} := G/\mathbb{Z}_G \simeq G_1/\mathbb{Z}_{G_1} \simeq G_2/\mathbb{Z}_{G_2}.$$

This 'explained' the web of dualities and coverings due to Ruijsenaars [95]:

$$T^*\mathbb{R} imes T^*SQ(n) \xrightarrow{\operatorname{id}_2 imes \mathcal{R}_0} T^*\mathbb{R} imes \mathbb{C}^{n-1}$$
 $\downarrow \psi_2^{\operatorname{II}} \qquad \qquad \downarrow \psi_2^{\operatorname{II}}$
 $T^*U(1) imes T^*SQ(n) \xrightarrow{\operatorname{id}_1 imes \mathcal{R}_0} T^*U(1) imes \mathbb{C}^{n-1}$
 $\downarrow \psi_1^{\operatorname{II}} \qquad \qquad \downarrow \psi_1^{\operatorname{II}}$
 $P = T^*Q(n) \xrightarrow{\mathcal{R}} \widehat{P}_c = \mathbb{C}^{n-1} imes \mathbb{C}^{ imes}$

 $Q(n) = \mathbb{T}_n^0/S_n$ is the configuration space of n indistinguishable non-colliding point particles moving on the circle and SQ(n) belongs to the relative motion of n distinguishable particles. On the right-side the corresponding completed dual phase spaces appear and the vertical maps are coverings.

As our final example we deal with the standard trigo RS system, whose phase space is $P := T^*Q(n)$. Here, $Q(n) := \mathbb{T}_n^0/S_n$ with \mathbb{T}_n^0 being the regular part of the maximal torus $\mathbb{T}_n < U(n)$.

The corresponding Lax matrix L and symplectic form ω are:

$$L_{jk}(q,p) = \frac{e^{p_k} \sinh(-x)}{\sinh(\mathrm{i}q_j - \mathrm{i}q_k - x)} \prod_{m \neq j} \left[1 + \frac{\sinh^2 x}{\sin^2(q_j - q_m)} \right]^{\frac{1}{4}} \prod_{m \neq k} \left[1 + \frac{\sinh^2 x}{\sin^2(q_k - q_m)} \right]^{\frac{1}{4}}$$

$$\omega = \sum_k dp_k \wedge dq_k, \qquad p_k \in \mathbb{R}, \qquad 0 \le q_k < \pi, \quad q_1 > q_2 > \dots > q_n$$

The dual system can be *locally* characterized by

$$\widehat{L}_{jk}(e^{\mathrm{i}\widehat{q}},\widehat{p}) = \frac{e^{\mathrm{i}\widehat{q}_k}\sinh(-x)}{\sinh(\widehat{p}_j - \widehat{p}_k - x)} \prod_{m \neq j} \left[1 - \frac{\sinh^2 x}{\sinh^2(\widehat{p}_j - \widehat{p}_m)} \right]^{\frac{1}{4}} \prod_{m \neq k} \left[1 - \frac{\sinh^2 x}{\sinh^2(\widehat{p}_k - \widehat{p}_m)} \right]^{\frac{1}{4}}$$

 $\widehat{p} = \operatorname{diag}(\widehat{p}_1, \dots, \widehat{p}_n) \in \mathfrak{C}_x := \{\widehat{p} \mid \widehat{p}_j - \widehat{p}_{j+1} > |x|, \quad j = 1, \dots, (n-1)\}$ $e^{\mathrm{i}\widehat{q}} \in \mathbb{T}_n$ with $\widehat{q} = \operatorname{diag}(\widehat{q}_1, \dots, \widehat{q}_n)$. Dual phase space $\widehat{P} = \mathbb{T}_n \times \mathfrak{C}_x$ is open submanifold of cotangent bundle of \mathbb{T}_n , with $\widehat{\omega} = d\widehat{p}_k \wedge d\widehat{q}_k$.

The commuting flows associated with \hat{L} are **not** complete on \hat{P} . Ruijsenaars [95] constructed completion using direct methods.

Poisson-Lie analogue of Kazhdan-Kostant-Sternberg reduction

According to Semenov-Tian-Shansky [85] and Lu-Weinstein [90]:

• P-L analogue of $T^*U(n)$ is Heisenberg double of Poisson U(n).

The Heisenberg double of U(n) is the *real* manifold $GL(n,\mathbb{C})$.

Every $K \in GL(n, \mathbb{C})$ admits two Iwasawa decompositions:

$$K=b_Lg_R^{-1}$$
 and $K=g_Lb_R^{-1}$ with $g_{L,R}\in U(n),\ b_{L,R}\in B$

B: group of upper triangular matrices with positive diagonal entries

Define Iwasawa maps
$$\Lambda_{L,R}:GL(n,\mathbb{C}) o B$$
 and $\Xi_{L,R}:GL(n,\mathbb{C}) o U(n)$

$$\Lambda_{L,R}(K) := b_{L,R}$$
 and $\Xi_{L,R}(K) := g_{L,R}$

 $GL(n,\mathbb{C})$ has natural symplectic form (Alekseev-Malkin [94])

$$\omega_{+} = \frac{1}{2} \operatorname{Str} \left(d\Lambda_{L} \Lambda_{L}^{-1} \wedge d\Xi_{L} \Xi_{L}^{-1} \right) + \frac{1}{2} \operatorname{Str} \left(d\Lambda_{R} \Lambda_{R}^{-1} \wedge d\Xi_{R} \Xi_{R}^{-1} \right)$$

Commuting Hamiltonians from dual P-L groups

Iwasawa maps $\Xi_{L,R}: GL(n,\mathbb{C}) \to U(n)$ and $\Lambda_{L,R}: GL(n,\mathbb{C}) \to B$ are **Poisson maps** if U(n) and B are equipped with their standard Poisson structures. In fact, the Poisson bracket $\{\ ,\ \}_+$ defined by ω_+ closes on

$$\equiv_{L,R}^* C^{\infty}(U(n))$$
 and on $\Lambda_{L,R}^* C^{\infty}(B)$

Induced Poisson bracket on U(n) is standard Sklyanin bracket.

$$C^{\infty}(U(n))^{U(n)}$$
: the adjoint (conjugation) invariant functions

 $C^{\infty}(B)^c \equiv C^{\infty}(B)^{U(n)}$: the center of the Poisson bracket on $C^{\infty}(B)$ provided by the dressing invariants

$$\Lambda_L^* C^\infty(B)^c = \Lambda_R^* C^\infty(B)^c$$
 and $\Xi_R^* C^\infty(U(n))^{U(n)}$ form **Abelian subalgebras** in $C^\infty(GL(n,\mathbb{C}))$ w.r.t. $\{\ ,\ \}_+$

These Abelian algebras give 'canonical free Hamiltonians'. Their flows are written down explicitly in 0906.4198.

Quasi-adjoint symmetry

Following Lu [90]:

Poisson map from phase space into P-L group B is called (equivariant) P-L moment map. Every such map generates infinitesimal Poisson action of U(n)

 $\Lambda_{L,R}: GL(n,\mathbb{C}) \to B$ moment maps generating left/right multiplications by U(n). The product $\Lambda := \Lambda_L \Lambda_R : GL(n,\mathbb{C}) \to B$ is also P-L moment map. Λ generates infinitesimal 'quasi-adjoint' action of U(n).

Concretely, for any $Y \in u(n)$ define vector field \tilde{Y} on $GL(n,\mathbb{C})$ by

$$\mathcal{L}_{\tilde{Y}}f := \Im \operatorname{tr} (Y\{f, \Lambda\}_{+}\Lambda^{-1}), \qquad \forall f \in C^{\infty}(GL(n, \mathbb{C}))$$

Integration of infinitesimal action yields U(n) action on $GL(n,\mathbb{C})$:

$$\eta \triangleright K := \eta K \Xi_R(\eta \wedge_L(K)), \qquad \eta \in U(n), \quad K \in GL(n, \mathbb{C})$$

Now can reduce $(GL(n,\mathbb{C}),\omega_+)$ by choosing $\nu\in B$ and imposing moment map constraint: $\Lambda(K)=\nu,\quad K\in GL(n,\mathbb{C}).$

'Canonical free Hamiltonians' are invariant under the quasi-adjoint action of U(n); thus can be reduced simultaneously.

'Unreduced Lax matrices'

generators of
$$C^{\infty}(B)^c$$
: $f_k(b) := \frac{1}{k} \operatorname{tr}(bb^{\dagger})^k \quad \forall k \in \mathbb{Z}^*$ $/C^{\infty}(B)^c = C^{\infty}(B)^{U(n)}$ – dressing invariants/

generators of
$$C^{\infty}(U(n))^{U(n)}$$
: $\phi_k(g):=\frac{1}{k}\mathrm{tr}\,(g^k+g^{-k})$
$$\phi_{-k}(g):=\frac{1}{k!}\mathrm{tr}\,(g^k-g^{-k}) \quad \forall k\in\mathbb{Z}_+$$

Canonical Hamiltonians $H_k := f_k \circ \Lambda_R$ and $\hat{H}_k := \phi_k \circ \Xi_R$ are **spectral** invariants of matrix functions \mathcal{L} and $\hat{\mathcal{L}}$ defined on the double by

$$\mathcal{L} := \Lambda_R \Lambda_R^{\dagger}$$
 and $\widehat{\mathcal{L}} := \Xi_R$

We call \mathcal{L} and $\widehat{\mathcal{L}}$ unreduced Lax matrices.

The quasi-adjoint action operates on the 'unreduced Lax matrices' \mathcal{L} and $\widehat{\mathcal{L}}$ by similarity transformations. Hence \mathcal{L} and $\widehat{\mathcal{L}}$ yield Lax matrices for reduced systems obtained from $\{H_k\}$ and from $\{\widehat{H}_k\}$.

Definition of the reduction and the main result

- First, fix value of moment map Λ to some constant $\nu \in B$.
- Second, factor level set $\Lambda^{-1}(\nu)$ by isotropy group G_{ν} of ν .

The crux is the choice $\nu := \nu(x)$: with $x \neq 0$ real parameter

$$\nu(x)_{kk} = 1, \quad \forall k, \quad \nu(x)_{kl} = (1 - e^{-2x})e^{(l-k)x}, \quad \forall k < l$$

'Constraint-surface' $\Lambda^{-1}(\nu(x))$ is embedded submanifold of $GL(n,\mathbb{C})$.

Central U(1) < U(n) acts trivially, effective gauge group $G_{\nu(x)}/U(1)$ acts freely.

- We constructed two explicit models of the reduced phase space $\Lambda^{-1}(\nu(x))/G_{\nu(x)}$ and identified them with trigo RS phase space (P,ω) and with natural completion of dual phase space $(\widehat{P},\widehat{\omega})$.
- Unreduced Lax matrix \mathcal{L} descends to trigo RS Lax matrix L in terms of the model (P, ω) and $\widehat{\mathcal{L}}$ yields dual Lax matrix \widehat{L} on $(\widehat{P}, \widehat{\omega})$.
- In this way we derived 'trigonometric Ruijsenaars duality' from Poisson-Lie duality. For full details, see our paper in arXiv:0906.4198.

Conclusion and remarks on open problems

Presented group theoretical method that yields many-body systems together with geometric interpretation of their duality relations.

Technically simplifies parts of original work of Ruijsenaars [88,95]. Main advantage:

Completion of local phase spaces and duality symplectomorphisms result automatically, once the correct starting point is 'guessed'.

A few problems for future work:

- Study compactified, hyperbolic and elliptic RS systems.
- Explore reduced systems at arbitrary moment map value.
- Quantum Hamiltonian reduction (\sim works on special functions) Etingof-Kirillov [94], Noumi [96]: Q.G. interpretation of Macdonald polynomials
- Connections to bispectrality and to separation of variables.
- Investigate 'soliton-antisoliton' systems.
- Derive BC(n) (van Diejen) systems by symplectic reduction.