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References: arXiv:0809.1509, 0901.1983, 0906.4198, 1005.4531 [math-ph]

• Two integrable many-body systems are dual to each other if the

action variables of system (i) are the particle positions of system

(ii), and vice versa. Underlying phase spaces are symplectomorphic.

• First example is the self-duality of the rational Calogero system.

Interpreted in terms of symplectic reduction by Kazhdan, Kostant

and Sternberg (1978).

• Duality was discovered and explored by Ruijsenaars (1988-95)

in his direct construction of action-angle variables for Calogero-

Sutherland type systems and their ‘relativistic’ deformations.
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The simplest example

Rational Calogero system: HCal(q, p) =
1

2

n∑

k=1

p2
k +

1

2

∑

j 6=k

x2

(qk − qj)2

Symplectic reduction: Consider phase space T ∗iu(n) ' iu(n) × iu(n) := {(Q, P )}
with two families of ‘free’ Hamiltonians {tr (Qk)} and {tr (P k)}. Reduce by the
adjoint action of U(n) using the moment map constraint

[Q, P ] = µ(x) := ix
∑

j 6=k

Ej,k

This yields the self-dual Calogero system (OP [76], KKS [78]):

gauge slice (i): Q = q := diag(q1, . . . , qn), q1 > · · · > qn, with p := diag(p1, . . . , pn)

P = p + ix
∑

j 6=k

Ejk

qj − qk

≡ LCal(q, p) Lax matrix, tr (dP ∧ dQ) =
n∑

k=1

dpk ∧ dqk

gauge slice (ii): P = p̂ := diag(p̂1, . . . , p̂n), p̂1 > · · · > p̂n, with q̂ := diag(q̂1, . . . , q̂n)

Q = −LCal(p̂, q̂) dual Lax matrix, tr (dP ∧ dQ) =
n∑

k=1

dq̂k ∧ dp̂k.

The alternative gauge slices give two models of the reduced phase space. Their
natural symplectomorphism is the ‘action-angle map’ for the two Calogero sys-
tems: alias the duality map. Ruijsenaars hinted at analogous picture in general.
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A ‘dual pair’ of integrable many-body systems

Hyperbolic Sutherland system (1971):

Hhyp−Suth(q, p) =
1

2

n∑

k=1

p2
k +

x2

2

∑

j 6=k

1

sinh2(qj − qk)

Basic Poisson brackets: {qi, pj} = δi,j, x: non-zero, real constant.

Rational Ruijsenaars-Schneider system (1986):

Hrat−RS(p̂, q̂) =
n∑

k=1

cosh(q̂k)
∏

j 6=k

[
1 +

x2

(p̂k − p̂j)2

]1
2

Poisson brackets: {p̂i, q̂j} = δi,j (p̂i are RS ‘particle positions’).

Systems describe n ‘particles’ moving on the line, and are integrable.

Ruijsenaars (1988) constructed ‘duality symplectomorphism’ (action-

angle map) between the underlying phase spaces.
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Local description of two other dual pairs

Standard trigonometric Ruijsenaars-Schneider [86] system:

Htrigo−RS =
n∑

k=1

(cosh pk)
∏

j 6=k

[
1 +

sinh2x

sin2(qk − qj)

]1
2

It is a relativistic generalization (here with c = 1) of

Htrigo−Suth =
1

2

n∑

k=1

p2
k +

x2

2

∑

j 6=k

1

sin2(qk − qj)

The dual systems (Ruijsenaars [88,95]):

Ĥtrigo−RS =
n∑

k=1

(cos q̂k)
∏

j 6=k

[
1− sinh2x

sinh2(p̂k − p̂j)

]1
2

H̃rat−RS =
n∑

k=1

(cos q̂k)
∏

j 6=k

[
1− x2

(p̂k − p̂j)2

]1
2

Htrigo−RS, Ĥtrigo−RS: different real forms of complex trigo RS.
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Further self-dual systems

Compactified trigonometric RS (IIIb) system, locally given by

Hcompact−RS =
n∑

k=1

(cos pk)
∏

j 6=k

[
1− sin2x

sin2(qk − qj)

]1
2

Hyperbolic Ruijsenaars-Schneider system:

Hhyp−RS =
n∑

k=1

(cosh pk)
∏

j 6=k

[
1 +

sinh2x

sinh2(qk − qj)

]1
2

• Our purpose is to derive all of Ruijsenaars’ dualities by reductions
of suitable finite-dimensional, real phase spaces. Then study new

cases: systems with two types of particles, BC(n) systems etc.

• Today, I first overview the non-self-dual cases and then mention
open problems.
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Duality from symplectic reduction: the basic idea

Start with ‘big phase space’, of group theoretic origin, equipped

with two commuting families of ‘canonical free Hamiltonians’.

Apply suitable single symplectic reduction to the big phase space

and construct two ‘natural’ models of the reduced phase space.

The two families of ‘free’ Hamiltonians turn into interesting many-

body Hamiltonians and particle-position variables in terms of

both models. Their rôle is interchanged in the two models.

The natural symplectomorphism between the two models of the

reduced phase space yields the ‘duality symplectomorphism’.

Motivated by KKS [78], the above ‘scenario’ was described by Gorsky and

Nekrasov in the nineties (see e.g. Fock-Gorsky-Nekrasov-Roubtsov [2000]). They

focused on local questions working mostly with infinite-dimensional phase spaces

and in a complex holomorphic setting. Global structure of real phase spaces is relevant.
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Duality between hyperbolic Sutherland and rational RS

Take real Lie algebra gl(n,C) with bilinear form 〈X, Y 〉 := <tr (XY ), and minimal
coadjoint orbit of U(n): Ox := {ξ = ix(1n− vv†) | v ∈ Cn, |v|2 = n }. Start with the
‘big phase space’ (M,ΩM):

M := T ∗GL(n,C)×Ox ' (GL(n,C)× gl(n,C))×Ox = {(g, JR, ξ)}.
Introduce matrix functions L and L̂ on M by

L(g, JR, ξ) := JR and L̂(g, JR, ξ) := gg†.

These ‘unreduced Lax matrices’ generate ‘canonical free Hamiltonians’

Hk :=
1

k
<tr (Lk), Ĥ±k := ± 1

2k
tr (L̂k), k = 1, . . . , n

We shall reduce by symmetry group

K := U(n)× U(n),

where (ηL, ηR) ∈ K acts on M by symplectomorphism

ΨηL,ηR
: (g, JR, ξ) 7→ (ηLgη−1

R , ηRJRη−1
R , ηLξη−1

L )

generated by moment map

Φ : M → u(n)⊕ u(n), Φ(g, JR) = ((gJRg−1)u(n) + ξ,−JR
u(n))

Use two models of the reduced phase space: Mred := M//0K ≡ Φ−1(0)/K.
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Consider the Weyl chamber: C := { q ∈ Rn | q1 > q2 > · · · > qn }. T ∗C ' C × Rn =
{(q, p)} has Darboux form ΩT ∗C =

∑
k dpk ∧ dqk. Define Hermitian matrix function

L on T ∗C by

L(q, p)jk := pjδjk − i(1− δjk)
x

sinh(qj − qk)

L is the standard Lax matrix of the hyperbolic Sutherland model.

Next, denote the elements of T ∗C = C × Rn as pairs (p̂, q̂). Define (Hermitian,
positive definite) matrix-function L̂ on T ∗C by

L̂(p̂, q̂)jk = uj(p̂, q̂)

[
ix

ix + (p̂j − p̂k)

]
uk(p̂, q̂),

uj(p̂, q̂) := e−q̂j/2
∏

m6=j

[
1 +

x2

(p̂j − p̂m)2

]1

4

, j = 1, . . . , n.

Then define Rn-valued function

v(p̂, q̂) := L̂(p̂, q̂)−
1

2u(p̂, q̂) with u = (u1, . . . , un)
T .

Finally, introduce the Ox-valued function

ξ(p̂, q̂) := ξ(v(p̂, q̂)) = ix(1n − v(p̂, q̂)v(p̂, q̂)†)

L̂ is the standard Lax matrix of the rational Ruijsenaars-Schneider system.
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The Sutherland gauge slice S: The manifold S defined by

S := { (eq, L(q, p),−µ(x)) | (q, p) ∈ C × Rn }
is a global cross section of the gauge orbits in Φ−1(0). In the

coordinates q, p on S the reduced symplectic form reads
∑

k dpk∧dqk.

Thus, the symplectic manifold (S,
∑

k dpk ∧ dqk) ' (T ∗C,ΩT ∗C) is a

model of the reduced phase space.

• Goes back to Olshanetsky-Perelomov [76], Kazhdan-Kostant-Sternberg [78].

The Ruijsenaars gauge slice Ŝ: The manifold Ŝ defined by

Ŝ := { (L̂(p̂, q̂)
1
2,2p̂, ξ(p̂, q̂)) | (p̂, q̂) ∈ C × Rn }

is a global cross section of the gauge orbits in Φ−1(0). In terms of

the coordinates p̂, q̂ on Ŝ the reduced symplectic form is
∑

k dq̂k∧dp̂k.

Hence, the symplectic manifold (Ŝ,
∑

k dq̂k ∧ dp̂k) ' (T ∗C,ΩT ∗C) is a

model of the reduced phase space.

• We proved in arXiv:0901.1983: Gauge transformation between the

two gauge slices is Ruijsenaars’ duality symplectomorphism.
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How to obtain the trigonometric Sutherland systems and their Ruijsenaars duals?

Consider cotangent bundle T ∗U(n) of U(n) (in right-trivialization):

T ∗U(n) = {(g, JL) | g ∈ U(n), JL ∈ u(n)∗ ' u(n)}
It carries the natural symplectic form

Ω(g, JL) = d tr (JLdgg−1)

and ‘canonical free Hamiltonians’ {Hk} and {Ĥ±k} defined by

Hk(g, JL) :=
1

k
tr (−iJL)

k, Ĥk(g, JL) :=
1

k
tr (gk+g−k), Ĥ−k(g, JL) :=

1

ik
tr (gk−g−k)

• One can write down their Hamiltonian flows explicitly.

• They are invariant under the adjoint action of U(n) on T ∗U(n):

η . (g, JL) = (ηgη−1, ηJLη−1) ∀η ∈ U(n),

generated by the moment map J : T ∗U(n) → u(n)∗ given by

J(g, JL) = JL + JR with JR(g, JL) := −g−1JLg.

J is sum of moment maps generating left/right multiplication.
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KKS [78] found that the moment map constraint J = µ(x) produces the trigono-
metric Sutherland system from the Hamiltonian system describing the free par-
ticle on U(n): (T ∗U(n),Ω, H2). The Hamiltonians {Hk} give action variables of
Sutherland system (and {Ĥ±k} become in effect Sutherland particle positions).

It can be shown that using another model of the reduced phase space {Ĥ±k} yield
the commuting Hamiltonians of the Ruijsenaars dual of the Sutherland system
(and {Hk} become in effect the dual particle positions).

Recently in 1005.4531 [math-ph] (V. Ayadi and L.F.: Trigonometric Sutherland systems and their
Ruijsenaars duals from symplectic reduction), we considered covering homomorphisms

G2 := R× SU(n) −→ G1 := U(1)× SU(n) −→ G := U(n)

and ‘KKS reductions’ of the 3 cotangent bundles by the effective symmetry group

Ḡ := G/ZG ' G1/ZG1
' G2/ZG2

.

This ‘explained’ the web of dualities and coverings due to Ruijsenaars [95]:

T ∗R× T ∗SQ(n)
id2×R0 //

ψI
2

²²

T ∗R× Cn−1

ψII
2

²²

T ∗U(1)× T ∗SQ(n)
id1×R0 //

ψI
1

²²

T ∗U(1)× Cn−1

ψII
1

²²

P = T ∗Q(n) R // P̂c = Cn−1 × C×
Q(n) = T0

n/Sn is the configuration space of n indistinguishable non-colliding point
particles moving on the circle and SQ(n) belongs to the relative motion of n
distinguishable particles. On the right-side the corresponding completed dual
phase spaces appear and the vertical maps are coverings.
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As our final example we deal with the standard trigo RS system,
whose phase space is P := T ∗Q(n). Here, Q(n) := T0

n/Sn with T0
n

being the regular part of the maximal torus Tn < U(n).

The corresponding Lax matrix L and symplectic form ω are:

Ljk(q, p) =
epk sinh(−x)

sinh(iqj − iqk − x)

∏

m 6=j

[
1 +

sinh2x

sin2(qj − qm)

]1

4 ∏

m 6=k

[
1 +

sinh2x

sin2(qk − qm)

]1

4

ω =
∑

k

dpk ∧ dqk, pk ∈ R, 0 ≤ qk < π, q1 > q2 > · · · > qn

The dual system can be locally characterized by

L̂jk(e
iq̂, p̂) =

eiq̂k sinh(−x)

sinh(p̂j − p̂k − x)

∏

m6=j

[
1− sinh2x

sinh2(p̂j − p̂m)

]1

4 ∏

m6=k

[
1− sinh2x

sinh2(p̂k − p̂m)

]1

4

p̂ = diag(p̂1, . . . , p̂n) ∈ Cx := {p̂ | p̂j − p̂j+1 > |x|, j = 1, . . . , (n− 1)}
eiq̂ ∈ Tn with q̂ = diag(q̂1, . . . , q̂n). Dual phase space P̂ = Tn × Cx is
open submanifold of cotangent bundle of Tn, with ω̂ = dp̂k ∧ dq̂k.

The commuting flows associated with L̂ are not complete on P̂ .
Ruijsenaars [95] constructed completion using direct methods.
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Poisson-Lie analogue of Kazhdan-Kostant-Sternberg reduction

According to Semenov-Tian-Shansky [85] and Lu-Weinstein [90]:

• P-L analogue of T ∗U(n) is Heisenberg double of Poisson U(n).

The Heisenberg double of U(n) is the real manifold GL(n,C).

Every K ∈ GL(n,C) admits two Iwasawa decompositions:

K = bLg−1
R and K = gLb−1

R with gL,R ∈ U(n), bL,R ∈ B

B: group of upper triangular matrices with positive diagonal entries

Define Iwasawa maps ΛL,R : GL(n,C) → B and ΞL,R : GL(n,C) → U(n)

ΛL,R(K) := bL,R and ΞL,R(K) := gL,R

GL(n,C) has natural symplectic form (Alekseev-Malkin [94])

ω+ =
1

2
=tr (dΛLΛ−1

L ∧ dΞLΞ−1
L ) +

1

2
=tr (dΛRΛ−1

R ∧ dΞRΞ−1
R )
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Commuting Hamiltonians from dual P-L groups

Iwasawa maps ΞL,R : GL(n,C) → U(n) and ΛL,R : GL(n,C) → B are
Poisson maps if U(n) and B are equipped with their standard
Poisson structures. In fact, the Poisson bracket { , }+ defined by
ω+ closes on

Ξ∗L,RC∞(U(n)) and on Λ∗L,RC∞(B)

Induced Poisson bracket on U(n) is standard Sklyanin bracket.

C∞(U(n))U(n): the adjoint (conjugation) invariant functions

C∞(B)c ≡ C∞(B)U(n): the center of the Poisson bracket on C∞(B)
provided by the dressing invariants

Λ∗LC∞(B)c = Λ∗RC∞(B)c and Ξ∗RC∞(U(n))U(n)

form Abelian subalgebras in C∞(GL(n,C)) w.r.t. { , }+
These Abelian algebras give ‘canonical free Hamiltonians’. Their
flows are written down explicitly in 0906.4198.
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Quasi-adjoint symmetry
Following Lu [90]:
Poisson map from phase space into P-L group B is called (equivariant) P-L
moment map. Every such map generates infinitesimal Poisson action of U(n)

ΛL,R : GL(n,C) → B moment maps generating left/right multiplications by U(n).

The product Λ := ΛLΛR : GL(n,C) → B is also P-L moment map.
Λ generates infinitesimal ‘quasi-adjoint’ action of U(n).

Concretely, for any Y ∈ u(n) define vector field Ỹ on GL(n,C) by

LỸ f := =tr (Y {f,Λ}+Λ−1), ∀f ∈ C∞(GL(n,C))

Integration of infinitesimal action yields U(n) action on GL(n,C):

η . K := ηKΞR(ηΛL(K)), η ∈ U(n), K ∈ GL(n,C)

Now can reduce (GL(n,C), ω+) by choosing ν ∈ B and imposing

moment map constraint: Λ(K) = ν, K ∈ GL(n,C).

‘Canonical free Hamiltonians’ are invariant under the quasi-adjoint
action of U(n); thus can be reduced simultaneously.
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‘Unreduced Lax matrices’

generators of C∞(B)c: fk(b) := 1
ktr (bb

†)k ∀k ∈ Z∗
/C∞(B)c = C∞(B)U(n) – dressing invariants/

generators of C∞(U(n))U(n): φk(g) :=
1

k
tr (gk + g−k)

φ−k(g) := 1
kitr (g

k − g−k) ∀k ∈ Z+

Canonical Hamiltonians Hk := fk◦ΛR and Ĥk := φk◦ΞR are spectral

invariants of matrix functions L and L̂ defined on the double by

L := ΛRΛ†R and L̂ := ΞR

We call L and L̂ unreduced Lax matrices.

The quasi-adjoint action operates on the ‘unreduced Lax matrices’

L and L̂ by similarity transformations. Hence L and L̂ yield Lax

matrices for reduced systems obtained from {Hk} and from {Ĥk}.
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Definition of the reduction and the main result

• First, fix value of moment map Λ to some constant ν ∈ B.
• Second, factor level set Λ−1(ν) by isotropy group Gν of ν.

The crux is the choice ν := ν(x): with x 6= 0 real parameter

ν(x)kk = 1, ∀k, ν(x)kl = (1− e−2x)e(l−k)x, ∀k < l

‘Constraint-surface’ Λ−1(ν(x)) is embedded submanifold of GL(n,C).

Central U(1) < U(n) acts trivially, effective gauge group Gν(x)/U(1) acts freely.

• We constructed two explicit models of the reduced phase space
Λ−1(ν(x))/Gν(x) and identified them with trigo RS phase space
(P, ω) and with natural completion of dual phase space (P̂ , ω̂).

• Unreduced Lax matrix L descends to trigo RS Lax matrix L in
terms of the model (P, ω) and L̂ yields dual Lax matrix L̂ on (P̂ , ω̂).

• In this way we derived ‘trigonometric Ruijsenaars duality’
from Poisson-Lie duality. For full details, see our paper in arXiv:0906.4198.
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Conclusion and remarks on open problems

Presented group theoretical method that yields many-body systems
together with geometric interpretation of their duality relations.

Technically simplifies parts of original work of Ruijsenaars [88,95].

Main advantage:

Completion of local phase spaces and duality symplectomorphisms
result automatically, once the correct starting point is ‘guessed’.

A few problems for future work:
• Study compactified, hyperbolic and elliptic RS systems.

• Explore reduced systems at arbitrary moment map value.

• Quantum Hamiltonian reduction (∼ works on special functions)
Etingof-Kirillov [94], Noumi [96]: Q.G. interpretation of Macdonald polynomials

• Connections to bispectrality and to separation of variables.

• Investigate ‘soliton-antisoliton’ systems.

• Derive BC(n) (van Diejen) systems by symplectic reduction.
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