Frv Library Documentation file:/l/F|/virgoApp/Frv/v4r0l/doc/Frv.html

The FrameVector Library (Frv)

Version v4r0l1
December 2, 2002
By D. Buskulic, I. Fiori, |. Ferrante, F. Marion, B. Mours

Summary
® |ntroduction
® TheFrVect Structure
e Usefull Framelib vector functions (Vector constructors, dump, destructor)
® Vector Copy and type Conversion and Decimation
®* How to changethe vector length: vector buffuring (FrvBuf)
® Vector arithmetic
® Thevector correlation: FrvCorr
® Thelinear filter: FrvLinFilt
® Thesecond order filter: FrvFilter2
® TheFast Fourier Transform for Real vector (FrvRFFT)
® Transfer Function
e Libraryinstallation (Basic Install, ROOT usage)
® TheROOT interface
[]

History

I ntroduction

This document describes a utility library dedicated to vector manipulation. The vectors used in this packages are the Frame
Library vectors (FrVect) described in the frame specification. The only part frame library part used in thislibrary is the vector
definition frome the Framel.h. Thislibrary isintend to simplify the access of date for the various vector. It provide most of
the basic tools to do vector algebra and basic signal processing. This code iswritten in C. It is thread safe and could be easily

used in C or C++ software.

TheFrVect Structure

The FrVect srtucture defined in the Frame Format specification and in the file Framel .h contains many fields. We list here
the fields that a non expert user may accessin aread mode. Some fields reserved for internal managemend have been omitted

struct FrVect {

char *nane; /* vector name */
unsi gned short conpress;/* 0 = no conpression; 1 = gzip, ... */
unsi gned short type; /* vector type (see bellow) */
unsi gned int nDat a; /* nunber of elenments=nx[0].nx[1]..nx[nDim */
unsi gned int nBytes; /* nunber of bytes */
char *dat a; /* pointer to the data area. */
unsigned int nDm /* nunber of dinmension */
unsi gned int *nx; /* nunber of elenent for this di nension */

1surl9 02/12/2002 16:53

Frv Library Documentation

2sur 19

doubl e *dx;
doubl e *startX;
char **unitX;
char *unity
FrVect *next;
short *dataS

i nt *dat al ;
FRLONG *dat aL
float *dataF;
doubl e *dat aD
unsi gned char
unsi gned short
unsi gned int
FRULONG

char **dataQ
int wSize;

*dat ay;
*dat aUS;
*dat aUl ;
*dat aUL;

/* step size value (express in above
the first x val ue

/* offset for
t nanme for
t nanme for

/* uni
/* uni

/* hook for

/* poi
/* poi
/* poi
/* poi
/* poi
/* poi
/* poi
/* poi
/* poi
/* poi

nt er
nt er
nt er
nt er
nt er
nt er
nt er
nt er
nt er
nt er

(used
(used

addi ti ona

to
to
to
to
to
to
to
to
to
to

t he
t he
t he
t he
t he
t he
t he
t he
t he
t he

data
dat a
dat a
dat a
dat a
dat a
dat a
data
data
data

for

for

data
ar ea
area
area
area
area
area
area
ar ea
ar ea
area

/* size of one data el enent

(same
(sane
(sane
(sane
(sane
(sane
(sane
(same
(same
(same

printout)
printout)

as
as
as
as
as
as
as
as
as
as

file:/l/F|/virgoApp/Frv/v4r0l/doc/Frv.html

unit)

*dat a)
*dat a)
*dat a)
*dat a)
*dat a)
*dat a)
*dat a)
*dat a)
*dat a)
*dat a)

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Thefollowing fields are filled only when a vector have been extract from a Frame. They may not been always available.

® FrVect *FrFilel GetV(FrFile*file, char *name, doubletStart. double duration);
ADC, PROC or SIM data time series starting at time tStart and lasting 'duration’ seconds. The vector boundaries are

unsi gned int GTi nes; /* vector time origin(GPS:s) */
unsi gned int GTi nmeN, /* vector tinme origin(nsec nodulo 1 sec) */
unsi gned short ULeapS; /* |eap seconds between GPS and UTC */
int |ocal Tine; /* Time offset = Local tinme - UTC (sec) */
b
The vector typeis one of the following:
FR _VECT_C, /* vector of char */
FR_VECT_2S, /* vector of short */
FR_VECT_8R, /* vector of double */
FR _VECT 4R, /* vector of float */
FR_VECT 4S, /* vector of int */
FR_VECT_8S, /* vector of |ong */
FR_VECT_C8, /* vector of conplex float */
FR_VECT_C16, /* vector of compl ex double */
FR_VECT _STRING, /* vector of string */
FR_VECT_2U, /* vector of unsigned short */
FR_VECT_4U, /* vector of unsigned int */
FR_VECT_8U, /* vector of unsigned |ong */
FR_VECT _1U, /* vector of unsigned char */
Additional field s exist but are used only for management purpose
Usefull FrameL ib vector functions
Back to summary

Return the vector for agiven

02/12/2002 16:53

Frv Library Documentation file:/l/F|/virgoApp/Frv/v4r0l/doc/Frv.html

3sur 19

adjusted to the frame boundary.

® FrVect *FrXXXDataReadT (FrFile *file, char *name, doubletStart); With XXX = Adc, Proc or Sim. These
function performed arandom access in afile and return the vector for a given (name) Adc, Proc or Sim datatime serie
starting at time tStart. The vector boundaries are adjusted to the frame boundary. If tStart = 0, it returns the data for the

first framein thefile.

® FrVect *FrameGetV(FrameH *frame, char *name); Return the vector for agiven ADC, PROC or SIM datatime
series.

® FrVect *FrXXXDataGetV(FrameH *frame, char *name); With XXX = Adc, Proc or Sim. These functions
return the vector for a given (name) Adc, Proc or Sim data time serie.

e FrVect* FrVectCopy(FrVect *vect); Returns acopy of the original vector.

e void FrVectDump(FrVect *vect, FILE *fp, long debugL vl); Dump on fp (like stdout) a vector

® void FrVectFillC(FrVect *vect, char value); Thisfunction add one data element to an existing vector. The vector
sizeis adjusted. Usually the vector is created with a 0 length, and then elements are added.

® void FrVectFilll (FrVect *vect, int value); Same as FrVectFillC but for integer.

® void FrVectFillS(FrVect *vect, short value); Same as FrVectFillC but for short.

® int FrVectFindQ(FrVect *vect, char *name); Thisfunction returnsfor avectro of string the index corresponding to
the given name.

® void FrVectFree(FrVect *vect); Freeall the vector space

® double = FrVectGetV(FrVect *vect, int index); Return the vector value for agiven index. They do the type
conversion if needed. They returns O if the vector do not exist or if theindex is out of range. Thisfunction is not as
efficient as adirect acces but it provides some protection and automatic type conversion. Supported types:. al non

complex numbers
® FrVect *FrVectNew(int type, int ndim, ...) To create avector of any dimension. (see the Fr doc for more details).
® FrVect *FrVectNewT S(char *name, double sampleRate, long nData,long nBits); Create atime serie.
® FrVect *FrVectNewlD(char *name, long type, long nData, double dx, char *unitx, char *unity); Create aone
dimension vector

Vector Copy and type Conversion and Decimation (file FrvCopy.c)

Goto: FrvClone, FrvCopy,FrvCopyToX, FrvCopyTo,Back to summary

FrvClone(vect, newName)
e Syntax: FrVect *=FrvClone(FrVect, char *newName)
® Thisfunction create a new vector (FrVect structure and data ared); It copy the header information but not the data. If
newName = NULL, the original vector name is used. This function returns null in case of problems like malloc failed.
® Supported types: all types.
FrVectCopy(vect)
® Syntax: FrVect *=FrVectCopy(FrVect, char *newName)
® Thisisafull vector copy from the FrameLib (FrVectHeader + data part). It does not change the vector type. This
function returns null in case of problems like malloc failed.
® Supported types: all types.
FrvCopyToF, FrvCopyTaoD, FrvCopyTol, FrvCopyToS

® Syntax:

02/12/2002 16:53

Frv Library Documentation file:/l/F|/virgoApp/Frv/v4r0l/doc/Frv.html

FrVect * = FrvCopyToF(FrVect *vect, double scale, char* newName);
FrVect * = FrvCopyToD(FrVect *vect, double scale, char* newName);
FrVect * = FrvCopyTol (FrVect *vect, double scale, char* newName);

FrVect * = FrvCopyToS(FrVect *vect, double scale, char* newName);

® These functions create a new vector of type float (FrvCopyToF), double (FrvCopyToD), int (FrvCopyTol) or short
(FrvCopyToS). The data are copy using the scale factor 'scale’ and casted to the proper type. The new vector will have

the same name as the original one except if anewName is provided (value non NULL).
® These functions return NULL in case of error (malloc failed, no input vector).
® Supported input types: all types except complex.

FrvCopyTo

® Syntax:
FrVect * = FrvCopyTo(FrVect *vect, double scale, FrVect *copy);
® Thisfunction copy the data from vector vect to the vector copy using the scale factor 'scale'and casted to the vector
copy type.

® Thisfunction returns NULL in case of error (malloc failed, no input vectors).
® Supported types:

o al typesfor vect except complex.

o float, double, int and short for copy.

FrvDecimateF, FrvDecimateD, FrvDecimatel, FrvDecimateS

® Syntax:
FrVect * = FrvDecimateF(FrVect *vect, int nGroup, char* newName);
FrVect * = FrvDecimateD(FrVect *vect, int nGroup, char* newName);
FrVect * = FrvDecimatel (FrVect *vect, int nGroup, char* newName);
FrVect * = FrvDecimateS(FrVect *vect, int nGroup, char* newName);

® These functions decimate the data from the vector vect by averaging nGroup values together. The result is put in a new
vector named 'newName' of type float, double, int or short. The size of the output vector is nGroup time smaller than the

size of the input vector vect. If newName = NULL, the name of the output vector is the same as the input one.
® These functions return NULL in case of error (malloc failed, no input vector).
® Supported input types: all types except complex.

FrvDecimate

® |t has been replace by FrVectDecimate: Syntax:
FrVect * = FrVectDecimate(FrVect *vect, int nGroup, FrVect *vOut);
® Thisfunction decimates the data from the vector vect by averaging nGroup values togehter. The result is put in the
vector vOut. The size of the vector vOut should be nGroup time smaller than the size of the input vector vect.
e |f vOut = NULL, the output result is put in the input vector.
® Thisfunction returns NULL in case of error (malloc failed, no input vector).
® Supported types: all types vect except complex.

Vector arithmetic (file FrvM ath.c)

Goto: FrvAdd, FrvCombine2, FrvCombine, FrvDelta,
FrvDiv,FrvMean,FrvMult,FrvM odulus,FrvPhase,FrvRms,FrvScale,FrvSub,Back to summary

All the following functions works only for the vectors of same type. They check that both vectors have the same size.
In case of error, they return aNULL pointer. Usually athe output vector could be past as argument.

4sur 19 02/12/2002 16:53

Frv Library Documentation file:/l/F|/virgoApp/Frv/v4r0l/doc/Frv.html

FrvBias

® Syntax: FrVect *FrvBias(FrVect *vectl, double bias, FrVect *vectOut)

® Thisfunction adds biasto vector vectl .
The output is stored in vector vectOut, which should have the same size and type of vectl.
If vectOut==NULL, vectl is modified.

® Supported types: only signed datatypes.

FrvAdd

® Syntax: FrVect* = FrvAdd(FrVect* vectl, FrVect* vect2, FrVect* vectOut, char *newName)

® Thisfunction computed vectOut= vectl+vect2. The vector vectOut could be vectl or vect2. If vectOut = NULL,
anew oneis created named newName. It returns, the output vector or NULL in case of error. If vectOut !=
NULL, the newName argument is ignored.

® Supported types: all.

® Examples:
v3 = FrvAdd(vl, v2, NULL,"vector3"); Create and fill anew vector called vector3.
FrVectAdd(vl, v2, v1, NULL); Put in v1 the sum of v1 and V2
FrvCombine2

® Syntax: FrVect* = FrvCombine(double sl, vectl, double s2, vect2, vectOut, char *newName)
® Thisfunction computed vectOut = s1*vect1+ s2*vect2 (elements by elements). The vector vectOut could be vectl or
vect2. If vectOut = NULL, anew oneis created. Its name is then newName. It returns, the vector result or NULL in
case of error. If vectOut '= NULL, the newName argument is ignored.
® Supported types: all.
® Examples:
v3 = FrvCombine2(1.3, v1, 3.3, v2, NULL, "result"); Isequivaent tov3=1.3*v1 + 3.3*v2

FrvCombine

® Syntax: FrVect* = FrvCombine(int nVector, scalel, vectl, ... ,scalen, vectn, FrVect* vectOut, char* newName)

® Thisfunction computed vectOut = scalel*vectl1+ ... up to n vectors (elements by elements). The vector vectOut could
be any of theinput vector. If vectOut = NULL, anew oneis created. Its nameis newName. It returns, the vector result

or NULL in case of error. If vectOut != NULL, the newName argument is ignored.
® Supported types: all.
® Examples:
v3 = FrvCombine(2, 1.3, v1, 3.3, v2, NULL); Isequivaent tov3=1.3*v1 + 3.3*v2

FrvDelta

® Syntax: int = FrvDelta(FrVect* vect, double *delta, double * previouse)

® Thisfunction computed maximum value of the differentiate vector: delta = max(abs(data[i+1] - data[i])). The result is
return in delta. If previous != NULL, the corresponding value is used to differentiate the first vector element. On return,
previous holds the value of the last vector element. This function returns zero for successful completion and a non zero

valuein case of error.
® Supported types: all non complex.
FrvDivide

e Syntax: FrVect* = FrvDivide(FrVect* vectl, FrVect* vect2, FrVect* vectOut, char* newName)

Ssur 19 02/12/2002 16:53

Frv Library Documentation file:/l/F|/virgoApp/Frv/v4r0l/doc/Frv.html

® Thisfunction computed vectOut= vectl/vect2 elements by elements after checking the division by 0. (if the
denominator is zero then the result is set also to 0. The vector vectOut could be vectl or vect2. If vectOut =

NULL, anew oneis created caled newName. This function returns, the vector result or NULL in case of error.
® Supported types: all.

FrvFlatten

® Syntax: FrVect *FrvFlatten(FrVect *vectl, FrVect *vectOut)

® Thisfunction puts vector extrema equal to zero, subtracting a straigth line.
The output is stored in vector vectOut, which should have the same size and type of vectl.
If vectOut==NULL, vectl is modified.

® Supported types: only signed datatypes.

Frvintegrate

e Syntax: FrVect *Frvintegrate(FrVect *inVect, int n, char* newName)

® Thisfunction performsthe "n"-order Integration (or Derivation if n<0) of asignal assumed to be in the frequency
domain. It takes asinput a FrVect vector structure "inVect" and DIVIDES it by omega™n (omega = 2.pi.i.dx[0Q]).
A new vector of type FR_VECT_8R (double) is created with name "newName" or the same name as the input

vector if newName == NULL.
® Allowed "n" values:

n=0 trivial case: no operation is performed

n>0 input spectrum is INTEGRATED n times
n<0 input spectrum is DERIVED ntimes(i.e. itisMULTIPLIED by omegaabs(n))

This function returns the resulting vector or NULL in case of error.
Supported types: all non complex.

FrvMean

® Syntax: double I nt = FrvMean(FrVect* vect, double *mean)

® Thisfunction computes the mean value of the input vector vect. Theresult is put in mean. It returns 1 in case of
failure (vector not found), or O in case of success.

® Supported types: all non complex types

FrvM odulus

® Function prototype: FrVect* = FrvModulus(FrVect *vectln, FrVect* vectOut, char *newName)

® Thisfunction computes the modulus of a complex vector vectln. The result is stored in vectOut, areal vector
(Float or Double according to the complex type of vectin).

e |f vectOut = NULL, anew oneis created. Its name is newName or 'module(vectin->name)' if newName = NULL.

® [t returns, the vector result or NULL in case of error.

® Supported types: works only for complex.

FrvMult

® Syntax: FrVect* = FrvMult(FrVect* vectl, FrVect* vect2, FrVect* vectOut, char *newName)

® Thisfunction computes vectOut= vect1*vect2 elements by elements. (thisis not a matrix multiplication); The
vector vectOut could be vectl or vect?. If vectOut = NULL, anew oneis created. Its name is then newName. It

6sur 19 02/12/2002 16:53

Frv Library Documentation file:/l/F|/virgoApp/Frv/v4r0l/doc/Frv.html

returns, the vector result or NULL in case of error. If vectOut = NULL, the newName argument is ignored.
® Supported types: all.

FrvMultConj

® Syntax: FrVect* = FrvMult(FrVect* vectl, FrVect* vect2, FrVect* vectOut, char *newName)

® Thisfunction computes vectOut= vect1* cc(vect2) elements by elements. (thisis not a matrix multiplication); The
vector vectOut could be vectl or vect2. If vectOut = NULL, anew oneis created. Its name is then newName. It
returns, the vector result or NULL in case of error. If vectOut = NULL, the newName argument is ignored.

® Supported types: FR_VECT_C8 and FR_VECT_C16.

FrvPhase

® Function prototype: FrVect* = FrvPhase(FrVect *vectin, FrVect* vectOut, char *newName)

® Thisfunction computes the phase of a complex vector vectin. The result is stored in vectOut, areal vector (Float
or Double according to the complex type of vectin).

e |f vectOut = NULL, anew oneis created. Its name is build as "phase(vectln->name)"

® [t returns, the vector result or NULL in case of error.

e Supported types: works only for complex.

FrvRms

® Syntax: double Int = FrvRms(FrVect* vect, double *mean, double *rms)

® Thisfunction computes the rms and mean value of the input vector vect. The result is put in mean and rms. It
returns 1 in case of failure (vector not found), or O in case of success.

® Supported types: all non complex types

FrvScale

Syntax: FrVect* = FrvScale(double scale, FrVect* vectl, FrVect* vectOut, newName)

This function computes vectOut= scale* vect1 elements by elements. (thisis not a matrix multiplication);
The vector vectOut could be vectl or vect2.

If vectOut = NULL, anew oneis created. Its name is then newName.

It returns, the vector result or NULL in case of error.

Supported types: all.

FrvStat

® This object compute an diding mean and rms values.
e Syntax: FrvStat* = FrvStatNew()
® or FrvStat* FrvStatProc(FrvStat *stat, FrVect *vect)

FrvSub

Syntax: FrVect* = FrvSub(FrVect* vectl, FrVect* vect2, FrVect* vectOut)
This function computes vectOut= vect1- vect2.

The vector vectOut could be vectl or vect2.

If vectOut = NULL, anew oneis created. Its name is then newName.

It returns, the vector result or NULL in case of error.

Supported types: all.

7sur 19 02/12/2002 16:53

Frv Library Documentation file:/l/F|/virgoApp/Frv/v4r0l/doc/Frv.html

FrvZeroMean

e Syntax: FrVect *FrvZeroMean(FrVect *vectl, FrVect *vectOut)

® Thisfunction subtracts the meanto vectl.
The output is stored in vector vectOut, which should have the same size and type of vectl.
If vectOut==NULL vect1 data are modified.

® Supported types: only signed datatypes.

The Vector Buffering (FrvBuf)

The purpose of this object isto resize vector actracted from frame. It can provides vector concatenation and support vector
overlap, decimation and type changes. The suported vector type are all types excpet when decimation is requested.

Goto: Using FrvBuf,FrvBufFree FrvBufFeed,FrvBufGetNext, FrvBuflnit,FrvBufNew,Back to
Summary

Using FrvBuf

In this example, the input vectors are extract from aframefile. New vectors are build . See FrvBufNew for the definition of
the FrvBuf parameters.

buf fer = FrvBuf New(out Si ze, outSize, -1, 0); // create a buffer object

while((frame = FraneRead(iFile)) !'= NULL) /1 loop on all frame fromone file
{vect = FraneCetV(franme, "adcl"); /1 find the vector for ADC 'adcl'
Fr vBuf Feed(buffer, vect); /1 feed the buffer
whi | e(Fr vBuf Get Next (buffer) == 0) /1 is there a vector in the buffer?

{ Fr Vect Dunp(buf f er - >out put, stdout, 2);} // use the output vector
An other example could be found in the file FrvBuf Test.c.

FrvBufFree

® gyntax: void FrvBufFree (FrvBuf* buffer);
® Thisfunction free the buffer object and all associated vectors, including the output vector.

FrvBufFeed

® gyntax: int FrvBufFeed (FrvBuf *buffer, FrVect *vect);
® Thisfunction copy the input data to the internal buffer. The size of the iinputs vectors could change from one call to the
next one but the type need to be the same.
® |treturns:
o Qif at least one output is ready
o 1if more call to FrvBufFeed are needed to get a complete output vector.
© 2incaseof error
© 3incase of error due to timing missmatch

FrvBufGetNext

8sur 19 02/12/2002 16:53

Frv Library Documentation file:/l/F|/virgoApp/Frv/v4r0l/doc/Frv.html

e Syntax: int FrvBufGetNext(FrvBuf *buffer);
® Thisfunction prepare the next output buffer available in buffer->output.
® |t returns:

o 1if acall to FrvBufFeed is needed,

o 0if avector isavailable

FrvBuflnit

e Syntax: int FrvBuflnit (FrvBuf *buffer, FrVect *signal, FrVect *ref);

® Thisfunction initiliaze the output buffer according to vect type. The vector provided should be identical (for the size
and type point of view) to the one provide to FrvBufFeed. A call to thisfunction is not mandatory and is automatically
performed at the first FrvBufFeed call.

® Thisfunction returns 1 in case of problem or O if everything is OK.
FrvBufNew

e Syntax :FrvBuf* FrvBufNew(int outSize, int step, int outType, int decimate, int delay);
® Thisfunction create an FrvBuf object.
® Arguments:
© outSize isthe number of element of the vector output
o stepisthe element index shift performd at each new vector output. To get a 50% overlapp for the output vectors,
you need to set step = outSize/2. The get no overlapp at all, you need to set step = outSize.

© outTypeisthe output vector type (see the Frame spec.). -1 means use input vetor type. Warning: the only type
conversion supported are those leading to aFR_VECT_2S (short), FR_VECT_4S (int), FR_VECT_4R (float),

FR_VECT_8R (double).

© decimate isthe output data rate reduction factor. For instance, decimate = 4 means that four elements of the input
vector are averaged to produce one element of the output vector.

o delay give the delay between the input vector and the output vector express in number of output samples.

® Example: We give here some result for various parameters set. For all the cases, we assuming that we feed the buffer
with vector containing : 0, 1, 2, 3, 4, ...:

o for outSize=4 step=2 type=-1 decimate=0 the vectorsreturnedare (012 3); (2345); (4567);...

o for outSize=4 step=4 type=-1 decimate=0 the vectorsreturned are (0123); (4567); (8910 11);...

o for outSize=4 step=4 type=-1 decimate=3 the vectorsreturned are (14 7 10); (1316 1921); (24 27 30 33
)i

o for outSize=4 step=2 type=-1 decimate=3 the vectorsreturnedare (14 7 10); (7 10 1316); (13 16 19 21

)i

Thevector correlation: FrvCorr
This abject computes the correlation among two vectors. The type of of the input vector could be any non complex type, but
the output vectors are of type FR_VECT_8R (double).

FrvCorrNew

Syntax: FrvCorr* FrvCorrNew(int maxlag, int normalize)
Creates anew FrvCorr structure

If normalize ==0 the correlation is unbiased.

Past values are set to zero.

9sur 19 02/12/2002 16:53

Frv Library Documentation file:/l/F|/virgoApp/Frv/v4r0l/doc/Frv.html

FrvCorrFree

e Syntax: void FrvCorrFree(FrvCorr* corr)
® Thisfunction frees the space allocated to correlation

FrvCorrlnit

® Syntax: int FrvCorrlInit(FrvCorr* corr, FrVect *vectl, FrVect *vect2)
® |nitilizes the corr object: creates al output structures

It isautomatically called by FrvCorrProc
® Returns: 0in case of success, >0 otherwise

FrvCorrProc

® Syntax: int FrvCorrProc(FrvCorr *corr, FrVect *vectl, FrVect *vect2)
® (Calculatesthe correlation among vectors 1 and 2:
c[i]=Sum_k v1[k] v2[k+i]
® the correlation of the two vectors are stored in FrVect * corr->present
the correlation averaged over consecutive framesisin FrVect * corr->average
® pointersto zero lag correlation are available in corr->present0 and corr->averageQ.
® |f corr->normalize==0 the unbiased correlation is calculated.

® For thefirst cal, past values are set to zero: they are recorded for subsequent calls
and can be changed with FrvCorrSetlni

FrvCorr SetPast

® Syntax: void FrvCorrSetPast(FrvCorr* corr, double* pastl, double* past2, int flag)
® Set vectors past times conditions vl [-n] = past1[n-1]
e f flag ==0 past times are set to zero.

Thelinear filter: FrvLinFilt

This object filters the data for one vector. The type of of the input vector could be any non complex type, but the output
vector (named filter->output) is of type FR_VECT _8R (double).

FrvLinFiltButt

® Syntax: FrvLinFilt *FrvLinFiltButt(double fp, doublefs, doubletp, doublets, int order, double fc)

® Createsa FrvlinFilt object consinsting of alow pass butterworth filter. Y ou can specify the filter using the two set of
parameters order, fc or fp,fstp,ts.

e f order>0, afilter of order "order" with a-3dB frequency equal to fc in units of sampling frequency is created. Other
inputs are ignored.

® f order=0 thefilter order is calculated according to the parameters fp,fstp,ts, where:

fp upper edge of pass band in units of sampling frequency.
fslower edge of stop band in units of sampling frequency.

tp value of transfer function modulus at fp.
ts value of trensfer function modulus at fs.

10sur 19 02/12/2002 16:53

Frv Library Documentation file:/l/F|/virgoApp/Frv/v4r0l/doc/Frv.html

® f order<0 and all the other parameters are different from zero, then the minimum order between the two given
possibilities is chosen. This option could be used to give an upper limit to filter length.

FrvButtOrder

® Syntax: int FrvButtOrder(double fp,double fs,double tp,double ts,double *wc)
® For internal use: calculates order of alow pass Butterworth filter, plus parameter wc.
® [nput:

fp upper edge of pass band in units of sampling frequency.

fslower edge of stop band in units of sampling frequency

tp value of transfer function modulus at fp.

tsvalue of trensfer function modulus at fs.

* Qutput:

filter order N.
wc parameter for butterworth filter. It is equal to tan(pi*fc) where fc is the frequency, in units of fs, were the
transfer function modulusis equal to sgrt(2).

FrvButtFilt

® Syntax: void FrvButtFilt(int N, double wc, double* a, double* b)
® Forinternal use: given the filter order N and the parameters wc (see function FrvButtOrder for explanation) calcul ates
lowpass filter coefficients a,b.

FrvButtCdl

® Syntax: void FrvButtCell(doublewc, int k, int N, double* a, double* b)
® Forinternal use: calculates the coefficient of an elemntary second order cell of a butterworth filter.

FrvLinFiltButtLowToHigh
® Syntax: void FrvLinFiltButtLowToHigh(FrvLinFilt * filter)

® Transforms alow pass Butterworth filter in an high pass one of the same order with the same cut-off frequency.
® Gainissetto 1for the Nyquist frequency.

FrvLinFiltFree

e Syntax: void FrvLinFiltFree(FrvLinFilt* filter)
® Comment:This function frees all the memory associate to the FrvLinFilt object.

FrvLinFiltInit
® Syntax: int FrvLinFiltInit(FrvLinFilt* filter, FrVect *vect)
® |nitializesthe filter object: creates all output structures.

® Returns: 0in case of success, 1 otherwise.

FrvLinFiltSetlni

11sur 19 02/12/2002 16:53

Frv Library Documentation

12 sur 19

® Syntax: void FrvLinFiltSetlni(FrvLinFilt* filter, double* ym, double* xm)
® Setsfilter initial conditionsx_n, n=-1....-(ha1) y_m, m=-1...-(mb-1)
These are stored in the order ym[0]=y_-1, ym[1]=y_-2...ym[na2]=y_na-1
xm[0]=x_-1, xm[1]=x_-2...xm[na-2]=x_mb-1

FrvLinFiltSetGain

® Syntax: void FrvLinFiltSetGain(FrvLinFilt* filter, double freq, double gain)
o Setsfilter gain at frequency freq .
freq isin sampling frequency units:

FrvLinFiltNew

® Syntax: FrvLinFilt* FrvLinFiltNew(double* a, double* b, int na, int mb)
® Creates anew filter with coefficients [0...na-1] and b[0...mb-1].

See FrvLinFiltProc to understand how the output is calculated.
Initial conditions are set to zero: can be changed by FrvLinFiltSetIni

FrvLinFiltMult

® Syntax: FrvLinFilt* FrvLinFiltMult(FrvLinFilt* filter2, FrvLinFilt* filter1)

® Multipliesfilterl and filter2 by convolution, and creates a new filter.
If necessary, old filters can be freed by the user.

FrvLinFiltCopy

e Syntax: FrvLinFilt * FrvLinFiltCopy(FrvLinFilt * filter Q)
® Copiesafilter to anew one. Filter output is not initialized.

FrvLinFiltAddZP

® Syntax: FrvLinFilt * FrvLinFiltAddZP(FrvLinFilt * filterO, double fase, double modulo, int type)
® Creates anew filter adding asingle real zero or pole or a couple of complex conjugates onesin the Z plane
® fase : zero-pole phase, in units of 2*pi, or frequency in units of sampling frequency

If itiszero or 0.5, only oneis zero or poleis added.
® modulo: zero-pole module. If it isapole, and if modulo>1, thefilter isunstable
® type: 0 addsazero

type: 1 adds apole only if it is stable
type: 2 adds a pole stable or not.

FrvLinFiltProc

® Syntax: int FrvLinFiltProc(FrvLinFilt *filter, FrVect *vect)

* Appliesthefilter "filter" to the vector "vect". The output is stored in FrVect* filter->output .

It is calculated according to:

a0*y n=-Sum (k=1...na) a k*y_(n-k)+ Sum_(k=0...mb) b_k *x_(n-k)
For the first call, initial condition are set to zero: they are recorded

for subsequent calls and can be changed with FrvLinFiltSetini.

® Theinput vector is unchanged by this call.
® |treturns 0 in case of successfull completion.

file:/l/F|/virgoApp/Frv/v4r0l/doc/Frv.html

02/12/2002 16:53

Frv Library Documentation file:/l/F|/virgoApp/Frv/v4r0l/doc/Frv.html

FrvSmartDecimate
This object perform a multistep decimation.
Example: The initiaization of the filter bank::

FrvSmartD * SDep01=FrvSmartDInit(10,50.,2.,0.99,0.001);
This ask to decimate of afactor ten starting from 50 Hz.

The frequencies up to 2 Hz are attenuated a maximum of 0.99 and the frequencies which are aliased in the frequency band up
to 2 Hz are attenuated at |east by afactor 0.001 .

Processing:

FrvSmartDProc(SDep01,vector, NULL);

The second order filter: FrvFilter2

This object filter the data for one vector. The type of of the input vector could be any non complex type, but the output vector
(named filter->output) is of type FR_VECT _8R (double).

FrvFilter 2Free

® Syntax: void FrvFilter2Free(FrvFilter2* filter)
® Comment:This function free all the memory associate to the FrvFilter2 object.

FrvFilter 2l nit

e Syntax: int FrvFilter2Init (FrvFilter2 *filter, FrVVect *vect);

® Thisfunction initiliaze the filter (especially the filter->output vector) according to vect type. The vector provided
should be identical (for the size and type point of view) to the one provide to FrvFilter2Proc. A call to thisfunctionis
not mandatory and is automatically performed at the first FrvFilter2Proc call.

® Thisfunction returns 0 in case of successor 1 in case of problem.

FrvFilter 2New

® Syntax: FrvFilter2* FrvFilter2New(double a2,double al,double a0, double b2,double b1,double bOhar option)
® Thisfonction create an FrvFilter2 Object. It returns NULL in case of problem.
® The6 filter parameters are defined in the following way: The transfer function (Laplace transform s=i*w) is:

Yout ('s) a2 * s**2 + al * s + a0

Yi np('s) b2 * s**2 + bl * s + b0

Example 1 : first order low-pass filter at fO with unity gain at dc
a2=0. al=0. a0=1. b2=0. b1=1/(2*pi*f0) bO=1.

Example 2 : first order high-passfilter at fO with unity gain at dc
a2=0. al=1/(2*pi*f0) a0=1. b2=0. b1=0. bO=1.

13sur 19 02/12/2002 16:53

Frv Library Documentation file:/l/F|/virgoApp/Frv/v4r0l/doc/Frv.html

Example 3 : second order low-pass filter at fO with quality factor Q
and unity gain at dc (e.g. pendulum)
a2=0. a1=0. a0=1. b2=1/(2*pi*f0)**2 bl=1/(2*pi*f0*Q) b0O=1

Example 4 : integrator with time constant t
a2=0. al=0. a0=1. b2=0. b1=t b0=0.

FrvFilter 2Proc

Syntax: int FrvFilter 2Proc(FrvFilter2 *filter, FrVect *vect)
Apply thefilter algorithm to the input vector vect.

Theinput vector is unchanged by this call.

It returns O in case of successfull completion.

The Fast Fourrier Transform (FFT) for Real Vector (FrvRFFT)

This Fast Fourrier Transform FFT object use FFTW. It works with real vector for the direct FFT, the Fourrier Tranform in
this case is 'halfcomplex' (the negative-frequency amplitudes for real dataare

the complex conjugate of the positive-frequency amplitudes) but the result is stored has a standard complex vector. All
internal compuation are done in double precision. The results are also stored in double precision.

Remark: The FFTW is no moreincluded in the Frv distribution. You need first to install FFTW.
FrvRFFTFree

e Syntax: void FrvRFFT (FrvFFT* fft)
® Comment:This function free all the memory associate to the FFT object.

FrvRFFTFor

® Syntax: FrvFFT* FrvRFFTFor (FrvFFT *fft, FrVect *vect)

® Performed the forward FFT algorithm "fft" to the vector "vect". Returns the result in the FrvFFT structure as output
(vector fft->output). The input vector hasto be real. The output vector (fft->output) will be a complex. If on input fft=0,
builds a standard fft structure from the vector vect with the option = "AHNPS".

® Theinput vector is unchanged by this call.

FrvRFFTInit

® Syntax: void FrvRFFTInit(FrvRFFT* fft, FrVect *vect)

® Thisfunction initiliaze the FFT (especially the fft->output vector) according to vect type. The vector provided should
beidentical (for the size and type point of view) to the one provide to FrvRFFTFor. A call to this function is not
mandatory and is automatically performed at the first FrvFFFTFor call.

® Thisfunction returns 0 in case of successor 1 in case of problem.

FrvRFFTNew
® Syntax: FrvFFT* FrvRFFTNew(char *option, int fftSize, int decimate)

® Thisfonction create an FFT Object.
© The option string could be set to NULL or could contain one of the following character:

14 sur 19 02/12/2002 16:53

Frv Library Documentation file:/l/F|/virgoApp/Frv/v4r0l/doc/Frv.html

H to apply an hanning window (normalized to not change the amplitude)

O to overlapp the data by half avector. Thisis usefull if you work on a continous stream with an Hanning
window.

P to supress the pedestal (average value)

S to compute the spectrum (amplitude)
A to compute the average spectrum (this force the use of the option S).Remark: the averageing is done on the

power (amplitude** 2).
N to normalized the result asif it's noise (i.e. unit are by sgrt(Hz)). The default units are absolute units.
Example: option = "HS"'means hanning window-+amplitude spectrum computed
o ffSizeisthe number of points (after the optional decimation) used to computed the fft. If fftSize < 1, the number
of point used isthe input vector size
o decimate is the decimation factor apply before the fft. For example, decimate = 4 means that 4 values of the input
vector will be averaged togheter before entering the fft algorithm.
® Storage: If the input vector as nData elements, the FrvFFT use at 2* nData double(or float if option bit 6 = 1). The
function will reserve nData double(or float) for each spectrum computed or if awindow is used.
e Comment on the FFT normalization: Normalization is computed for single sided spectrums (negative frequencies folded
on the positive one). With this convention:
© When we areloking at noise (option “N” used, i.e. units are 1./sqrt(Hz)) the average level for a gaussian noise
with an rms value = A* sgrt(sampleRate) (in the time domain) is A*sgrt(2) (in the frequency domain)
© When we arelooking at asignal (absolute unit, i.e. no option “N”) then for a sine wave of amplitude A (in the
time domaine) the FFT amplitude is A/sgrt(2) (thisisthe rmsvalue for asin function).

FrvRFFT SetDecay

® Syntax: void FrvRFFTSetDecay(FrvRFFT* fft, double decay)

® Thisfunction change the default decay value used to computed the mean values of the amplitude spectrum. If previous
isthe previous value and last the last computed value, decay is defined as:

mean = decay* previous + (1-decay)*last

So decay should beintherange O to 1.

® Remark: aslong as the number of FFT islessthan 1/decay, we perfomed only a plain averaged on the total number of
fft (ie decay = 1./nFFT).

® Thedefault value for decay is 0.99

® Thisfunction returns 0 in case of successor 1in case of problem.

The Transfer function computation (FrvTF)

This object compute a transfer function, assuming the the input signal has wide band noise.The useful FrVect members are:

tf->output The complex transfer function
tf->modulus The module of transfer function
tf->phase The phase of the transfer function

tf->correlation The correlation in the frequency domain

tf->errorM The error on the modulus of the transfer function (if option 'E' is used)
tf->errorP The error on the phase of the transfer function (if option 'E' is used)
tf->coherence The coherence (if option 'C' is used)

FrvTFError

® Syntax: void FrvTFError(FrvTF* tf)

15sur 19 02/12/2002 16:53

Frv Library Documentation file:/l/F|/virgoApp/Frv/v4r0l/doc/Frv.html

® Comment; This function compute the transer function errors. It is automatically called by FrvTFProc is the option
'E' has been used when creating the TF object.

FrvTFFree

e Syntax: void FrvTFFree(FrvTF* tf)
e Comment:This function free all the memory associate to the FrvTF object.

FrvTFInit

® Syntax: int FrvTFInit (FrvTF *tf, FrVect *signal, FrVect* reference);

® Thisfunction initiliaze the transfer function (especialy the tf->output vector) according to vect type. The vector
provided should be identical (for the size and type point of view) to the one provide to FrvTFProc. A call to this

function is not mandatory and is automatically performed at the first FrvTFProc call.
® Thisfunction returns 0 in case of successor 1 in case of problem.

FrvTFNew

® Syntax: FrvTF* FrvTFENew(char *option, int tfSize, int decimate)
® Thisfonction create an Transfer Function object.
© The option string could be set to NULL or could contain one of the following character:
C to compute the coherence
E to compute the error in the transfer function modulus and phase.
Example: option = "C"means the coherence will be computed
o tfSizeisthe number of points (after the optional decimation) used to computed the TF. If tfSize < 1, the number
of point used isthe input vector size
© decimate is the decimation factor apply before the fft. For example, decimate = 4 means that 4 values of the input
vector will be averaged togheter before entering the fft algorithms. Decimate=0 means no decimation.
® Storage: If the input vector as nData elements, the FrvFFT use at 2* nData double(or float if option bit 6 = 1). The
function will reserve nData double(or float) for each spectrum computed or if awindow is used.

FrvTFProc

® Syntax: int FrvTFProc(FrvTF *tf, FrVect *ouput, FrVect *inputNoise)

® Compute the transfer function define as the ratio between the FFT of the input noise and output signal. The transfert
function module (vector tf->modulus) is computed as the ratio between the mean amplitude of each FFT. The transfert

function phase is the mean vaule of the phase extracted from each transfer functions.
® Theinput vector is unchanged by this call.
® |treturns 0 in case of successfull completion.

FrvTFSetDecay

® Syntax: void FrvTFSetDecay(FrvTF* tf, double decay)

® Thisfunction change the default decay value used to computed the mean modulus and the phase.If previousisthe
previous value and last the last computed value, decay is defined as:

mean = decay* previous + (1-decay)*last

So decay should beintherangeOto 1.

® Remark: aslong as the number of call islessthan 1/decay, we perfomed only a plain averaged on the total number of fft
(ie decay = 1./nCall).

® The default value for decay is 0.999

16 sur 19 02/12/2002 16:53

Frv Library Documentation file:/l/F|/virgoApp/Frv/v4r0l/doc/Frv.html

17 sur 19

® Thisfunction returns 0 in case of successor 1in case of problem.

Library installation

Before installing Frv, you need first to install FFTW.

The latest version of the Frv library could be found in wwwiapp.in2p.fr/virgo/framel.. Assuming that you have downloaded
the gzip tar file for the library, you need to:

® unzip thefile by using the command gunzip Frv.tar;gz
® untart the file by using the command tar xvf Frv.tar
® gointhemgr directory and change in the script "makesh" the path to
© theframe Library (FR)(should be at |east version v5r00)
© the FFTW library
© therootLibrary (ROOTSYS) (Or comment the root part if root is not installed)
® then run the script "makesh"

For any question, e-mail to mours@Ilapp.in2p3.fr

The ROOT interface

Likefor the frame library, aROOT compatible shared library is available. To use it, you need to you need to update the
PATH and LD_LIBRARY_PATH to include the FrvROOT.so binary directory (named by your system). Then if you start

root from the Frv/vXX/root subdirectory, it will execute the FrvLogon.C which load everything you need.

Example of ROOT macros are available in the root subdirectory. Play with them to get an idea of what you could do.

History

Version v4r01 (December 2, 2002)
Thanks to Damir Buskulic, Isidoro Ferrante, Frederiqgue Marion Jean-Marie Teuler and Gabriele
Vedovato for suggestions, finding and reporting problems and bugs.

e FrvBuff
o Fix abug in FrvBufIni: when decimation was applied, the output vector time step was not
updated.
o Allow acall of FrvBufStilIToGo after anew and before afirst feed.
o Fix the type of the lastGTime variable (int->double).
e FrvFFT
o Update the normalisation in case of decimation according to the change made in FrvBufIni.
o Increase the default decay time to .999999
FrvMath: improve FrvStat to work even if the size of the input vector has changed.
FrvBufTest: fix acompilation error.
FrvLinFilt.c: update doc for Butterworth filter.
FrvFilter: Add "next" element to support linked list storage.

02/12/2002 16:53

Frv Library Documentation file:/l/F|/virgoApp/Frv/v4r0l/doc/Frv.html

Version v4r00 (Auguste 12, 2002)
® Convert to Frame format version 5 and frame library version v5r00 and higger
Version v3r30 (July 15, 2002)

* FrvMath:
© add the FrvStat object
© add the Frvintegrate function
© add a protection in FrvCombine (for malloc failed)
® FrvCorr.c fix bug if the type of the second vector is not the same as the type of the first vector and in the normalization.
* FrvLinFilt.c
© Add the function FrvLinFiltButtLowToHigh
© Fix abugintheinitialization of filter with naor nb <= 1.
FrvTFTest.c: fix RAND_MAX definition and the number of arguments for FrvTFNew.
testFT.cc: add amissing "'
FrvBuffFree: add protection when the object was never used.
FrvMath.c:
© Add the Frvintegrate function
© Add protection for malloc failed in FrvAdd, FrvCombine2, FrvDivide,FrvMult, FrvScale, FrvMul Conj

Version v3r20 (May 2, 2002)

* FrvTF:
© Rename the "numerator" vector to "correlation"”
° Fix anormalization error for the TF error.
® FrvLinFilt: Add optimized code for Butterworth filter up to order 6.

Version v3r10 (March 20, 2002)

®* FrvFFT:
© Fix abug in the normalisation when the decimation option was used.
®* FrvTF:
Fix abug which was producing a segmentation fault if the coherence option was not used.
Add aprotection to allow the use of decimate <= 0.
Add the function FrvTFFree and FrvTFError.
Add the option 'E' to compute the error on the transfer function.
® FrvLinFiltButt: initialize all variables.
® makesh: Update the script to fix some ROOT problem. Add also the file src/FrvLinkDef.h
® root/testTF.cc
° Fix abuginthe FrvTF cal
© Change the random generator to be machine independant.
© rename FrvROQOT.so to libFrvROOT.so
® remove the source code of FFTW
® Add the object FrvSmartDecimate (new file)

O O O o©o

Version v3r00 (November 22, 2001)

® FrvCopy:

18 sur 19 02/12/2002 16:53

Frv Library Documentation file:/l/F|/virgoApp/Frv/v4r0l/doc/Frv.html

© Propgate time information in FrvClone and FrvCopy
o Protect FrvClone against null input vector.
© Remove FrvDecimate (function replaced by FrVectDecimate).
* FrvMath:
© remove the function FrvMinMax which is now part of the FrameL.ib.
© Add thefunctions FrvMultConjc, FrvZeroMean, FrvFlatten, FrvBias.
© Fix abug in FrvPhase (the sign of the phase was wrong).
® FrvFFT:
© Fix abug when computing the average amplitude. (the average was done on the amplitude, not the power).
o Fix abug on the overall amplitude (it has been reduce by afactor sqrt(2)).
* FrvTF:
© Fix abug when computing the average amplitude. (the average was done on the amplitude, not the power).
© Add the option to compute the coherence. WARNING:The API for FrvTFNew has been changed (add the option
field).
® Add the modules FrvCorr and FrvLinFilter
® (Changetheinstalation script to an sh scrit. (mgr/makesh).
* FrvBuf:
o full rewrite.
o Check the time (GPS) constitance for the input vector if thisinfomration is available.
© Add the possihility to add a delay between the input and output vectors. WARNING: the API for FrvBufNew has
been changed (add the delay paramters)

Version v2r10 (April 22, 2001)

® Fix abugin FrvTF.c: the code was not working properly if decimation was used.

® Fix abugin FrvFFT.c the imaginary part of the FFT for on point was stored in the next points. This was introducing a
small biasin the FFT and sometime a crash.

® Upgrade FrvBufFeed to be able to change the size of the input vector from one call to the next one.

Version v2r02 (Jan 16, 2001)

Fix abug in FrvFFT .c (the function crash if the vector had not unitY label).

Fix abugin FrvTF.c (the output vector was not properly initilazed).

Fix abug in FrvBuf.c (the step performed was not correct when decimation was apply).
Remove the function FrameFnR (replace by FrameReadRecycle from Fr).

Version v2r01 (Jan 11, 2001)
® Add the function FrameFnR. This function will be move in the future to the FrameLib.
Version v2r0 (Jan 10, 2001)

® Start history

19sur 19 02/12/2002 16:53

