
The Frame Vector Library (Frv)

Version v4r11 
March 03, 2004 

By D. Buskulic, I. Fiori, I. Ferrante, F. Marion, B. Mours

Summary

Introduction 
The FrVect Structure 
Usefull FrameLib vector functions (Vector constructors, dump, destructor) 
Vector Copy and type Conversion and Decimation 
How to change the vector length: vector buffuring (FrvBuf) 
Vector arithmetic 
The vector correlation: FrvCorr 
The linear filter: FrvLinFilt 
The second order filter: FrvFilter2 
The Fast Fourier Transform for Real vector (FrvRFFT) 
Transfer Function 
Library installation (Basic Install, ROOT usage) 
The ROOT interface 
History 

Introduction

This document describes a utility library dedicated to vector manipulation. The vectors used in this packages are the
Frame Library vectors (FrVect) described in the frame specification. The only part frame library part used in this library
is the vector definition frome the FrameL.h. This library is intend to simplify the access of date for the various vector. It
provide most of the basic tools to do vector algebra and basic signal processing. This code is written in C. It is thread safe
and could be easily used in C or C++ software. 

The FrVect Structure

The FrVect srtucture defined in the Frame Format specification and  in the file FrameL.h contains many fields. We list
here the fields that a non expert user may access in a read mode. Some fields reserved for internal managemend have been
omitted 

struct FrVect { 

  char  *name;            /* vector name                              */ 
  unsigned short compress;/* 0 = no compression; 1 = gzip, ...        */ 
  unsigned short type;    /* vector type  (see bellow)                */ 
  unsigned int  nData;    /* number of elements=nx[0].nx[1]..nx[nDim] */ 
  unsigned int  nBytes;   /* number of bytes                          */ 
  char  *data;            /* pointer to the data area.                */ 
  unsigned int  nDim;     /* number of dimension                      */ 
  unsigned int *nx;       /* number of element for this dimension     */ 
  double *dx;             /* step size value (express in above unit)  */ 
  double *startX;         /* offset for the first x value             */ 
  char   **unitX;         /* unit name for (used for printout)        */ 
  char    *unitY;         /* unit name for (used for printout)        */ 

1 sur 19 03/03/2004 17:09

Frv Library Documentation file:///C|/Documents and Settings/mours/Bureau/Frv.html



  FrVect *next;           /* hook for additional data                 */ 
  short  *dataS;          /* pointer to the data area (same as *data) */ 
  int    *dataI;          /* pointer to the data area (same as *data) */ 
  FRLONG *dataL;          /* pointer to the data area (same as *data) */ 
  float  *dataF;          /* pointer to the data area (same as *data) */ 
  double *dataD;          /* pointer to the data area (same as *data) */ 
  unsigned char  *dataU;  /* pointer to the data area (same as *data) */ 
  unsigned short *dataUS; /* pointer to the data area (same as *data) */ 
  unsigned int   *dataUI; /* pointer to the data area (same as *data) */ 
  FRULONG        *dataUL; /* pointer to the data area (same as *data) */ 
  char  **dataQ;          /* pointer to the data area (same as *data) */ 
  int  wSize;             /* size of one data element                 */ 

The following fields are filled only when a vector have been extract from a Frame. They may not been always available. 

  unsigned int GTimeS;    /* vector time origin(GPS:s)                */ 
  unsigned int GTimeN;    /* vector time origin(nsec modulo 1 sec)    */ 
  unsigned short ULeapS;  /* leap seconds between GPS and UTC         */ 
  int localTime;          /* Time offset = Local time - UTC (sec)     */ 
}; 

The vector type is one of the following: 

       FR_VECT_C,     /* vector of char                           */ 
       FR_VECT_2S,    /* vector of short                          */ 
       FR_VECT_8R,    /* vector of double                         */ 
       FR_VECT_4R,    /* vector of float                          */ 
       FR_VECT_4S,    /* vector of int                            */ 
       FR_VECT_8S,    /* vector of long                           */ 
       FR_VECT_C8,    /* vector of complex float                  */ 
       FR_VECT_C16,   /* vector of complex double                 */ 
       FR_VECT_STRING,/* vector of string                         */ 
       FR_VECT_2U,    /* vector of unsigned short                 */ 
       FR_VECT_4U,    /* vector of unsigned int                   */ 
       FR_VECT_8U,    /* vector of unsigned long                  */ 
       FR_VECT_1U,    /* vector of unsigned char                  */ 

Additional field s exist but are used only for management purpose 

Usefull FrameLib vector functions 

Back to summary
FrVect *FrFileIGetV(FrFile *file, char *name, double tStart. double duration);     Return the vector for a
given ADC, PROC or SIM data time series starting at time tStart and lasting 'duration' seconds.  The vector
boundaries are adjusted to the frame boundary. 
FrVect *FrXXXDataReadT(FrFile *file, char *name, double tStart);     With XXX =  Adc, Proc or Sim. These
function performed a random access in a file and return the vector for a given (name) Adc, Proc or Sim data time
serie starting at time tStart. The vector boundaries are adjusted to the frame boundary. If tStart = 0, it returns the
data for the first frame in the file. 
FrVect *FrameGetV(FrameH *frame, char *name);     Return the vector for a given ADC, PROC or SIM data
time series. 
FrVect *FrXXXDataGetV(FrameH *frame, char *name);     With XXX =  Adc, Proc or Sim. These functions
return the vector for a given (name) Adc, Proc or Sim data time serie. 

2 sur 19 03/03/2004 17:09

Frv Library Documentation file:///C|/Documents and Settings/mours/Bureau/Frv.html



FrVect* FrVectCopy(FrVect *vect); Returns a copy of the original vector. 
void FrVectDump(FrVect *vect, FILE *fp, long debugLvl); Dump on fp (like stdout) a vector 
void FrVectFillC(FrVect *vect, char value);     This function add one data element to an existing vector. The
vector size is adjusted. Usually the vector is created with a 0 length, and then elements are added. 
void FrVectFillI(FrVect *vect, int value);     Same as FrVectFillC but for integer. 
void FrVectFillS(FrVect *vect, short value);     Same as FrVectFillC but for short. 
int FrVectFindQ(FrVect *vect, char *name);   This function returns for a vectro of string the index
corresponding to the given name. 
void FrVectFree(FrVect *vect);    Free all the vector space 
double = FrVectGetV(FrVect *vect, int index); Return the vector value for a given index. They do the type
conversion if needed. They returns 0 if the vector do not exist or if the index is out of range. This function is not as
efficient as a direct acces but it provides some protection and automatic type conversion. Supported types: all non
complex numbers 
FrVect *FrVectNew(int type, int ndim, ...)    To create a vector of any dimension. (see the Fr doc for more
details). 
FrVect *FrVectNewTS(char *name, double sampleRate,  long nData,long nBits);     Create a time serie. 
FrVect *FrVectNew1D(char *name, long type, long nData, double dx, char *unitx, char *unity);    Create a
one dimension vector 

Vector Copy and type Conversion and Decimation (file FrvCopy.c)

Go to: FrvClone,  FrvCopy,FrvCopyToX, FrvCopyTo,Back to summary

FrvClone(vect, newName)

Syntax:    FrVect *=FrvClone(FrVect, char *newName) 
This function create a new vector (FrVect structure and data area); It copy the header information but not the data.
If newName = NULL, the original vector name is used. This function returns null in case of problems like malloc
failed. 
Supported types: all types. 

FrVectCopy(vect)

Syntax:    FrVect *=FrVectCopy(FrVect, char *newName) 
This is a full vector copy from the FrameLib (FrVectHeader + data part). It does not change the vector type.
This function returns null in case of problems like malloc failed. 
Supported types: all types. 

FrvCopyToF, FrvCopyToD, FrvCopyToI, FrvCopyToS 

Syntax: 
FrVect * = FrvCopyToF(FrVect *vect, double scale,  char* newName);
FrVect * = FrvCopyToD(FrVect *vect, double scale, char* newName);
FrVect * = FrvCopyToI(FrVect *vect, double scale, char* newName);
FrVect * = FrvCopyToS(FrVect *vect, double scale, char* newName);

These functions create a new vector of type float (FrvCopyToF), double (FrvCopyToD), int (FrvCopyToI) or short
(FrvCopyToS). The data are copy using the scale factor 'scale' and casted to the proper type. The new vector will
have the same name as the original one except if a newName is provided (value non NULL). 
These functions return NULL in case of error (malloc failed, no input vector). 
Supported input types: all types except complex. 

FrvCopyTo 

3 sur 19 03/03/2004 17:09

Frv Library Documentation file:///C|/Documents and Settings/mours/Bureau/Frv.html



Syntax: 
FrVect * = FrvCopyTo(FrVect *vect, double scale,  FrVect *copy);

This function copy the data from vector vect to the vector copy using the scale factor 'scale'and casted to the vector
copy type. 
This function returns NULL in case of error (malloc failed, no input vectors). 
Supported output types: signed short, signed int, float, double, complex, hermitian 

FrvDecimateF, FrvDecimateD, FrvDecimateI, FrvDecimateS 

Syntax: 
FrVect * = FrvDecimateF(FrVect *vect, int nGroup,  char* newName);
FrVect * = FrvDecimateD(FrVect *vect, int nGroup, char* newName);
FrVect * = FrvDecimateI(FrVect *vect, int nGroup, char* newName);
FrVect * = FrvDecimateS(FrVect *vect, int nGroup, char* newName);

These functions decimate the data from the vector vect by averaging nGroup values together. The result is put in a
new vector named 'newName' of type float, double, int or short. The size of the output vector is nGroup time
smaller than the size of the input vector vect. If newName = NULL, the name of the output vector is the same as the
input one. 
These functions return NULL in case of error (malloc failed, no input vector). 
Supported input types: all types except complex. 

FrvDecimate 

It has been replace by FrVectDecimate: Syntax: 
FrVect * = FrVectDecimate(FrVect *vect, int nGroup,  FrVect *vOut);

This function decimates the data from the vector vect by averaging nGroup values togehter. The result is put in the
vector vOut. The size of the vector vOut should be nGroup time smaller than the size of the input vector vect. 
If vOut = NULL, the output result is put in the input vector. 
This function returns NULL in case of error (malloc failed, no input vector). 
Supported types: all types vect except complex. 

Vector arithmetic (file FrvMath.c) 

Go to: FrvAdd, FrvCombine2, FrvCombine, FrvDelta,
FrvDiv,FrvMean,FrvMult,FrvModulus,FrvPhase,FrvRms,FrvScale,FrvSub,Back to summary 
 All the following functions works only for the vectors of same type. They check that both vectors have the same
size. In case of error, they return a NULL pointer. Usually a the output vector could be past as argument.

FrvBias

Syntax: FrVect *FrvBias(FrVect *vect1, double bias, FrVect *vectOut) 
This function adds bias to vector vect1 . 
The output is stored in vector vectOut, which should have the same size and type of vect1. 
If vectOut==NULL, vect1 is modified. 
Supported types: only signed  data types. 

FrvAdd

Syntax:  FrVect* = FrvAdd(FrVect* vect1, FrVect*  vect2, FrVect* vectOut, char *newName) 
This function computed vectOut= vect1+vect2. The vector vectOut could be vect1 or vect2. If vectOut =
NULL, a new one is created named newName. It returns, the output vector or NULL in case of error. If
vectOut != NULL, the newName argument is ignored. 
Supported types: all. 
Examples: 
    v3 = FrvAdd(v1, v2, NULL,"vector3");   Create and fill a new vector called vector3. 

4 sur 19 03/03/2004 17:09

Frv Library Documentation file:///C|/Documents and Settings/mours/Bureau/Frv.html



    FrVectAdd(v1, v2, v1, NULL);             Put in v1 the sum of v1 and V2

FrvCombine2

Syntax: FrVect* = FrvCombine(double s1, vect1, double s2, vect2, vectOut, char *newName) 
This function computed vectOut = s1*vect1+ s2*vect2 (elements by elements). The vector vectOut could be vect1
or vect2. If vectOut = NULL, a new one is created. Its name is then newName. It returns, the vector result or NULL
in case of error. If vectOut != NULL, the newName argument is ignored. 
Supported types: all. 
Examples: 
    v3 = FrvCombine2(1.3, v1, 3.3, v2, NULL, "result");      Is equivalent to v3= 1.3*v1 + 3.3*v2

FrvCombine 

Syntax: FrVect* = FrvCombine(int nVector, scale1, vect1, ... ,scalen, vectn, FrVect* vectOut, char*
newName) 
This function computed vectOut = scale1*vect1+ ... up to n vectors (elements by elements). The vector vectOut
could be any of the input vector. If vectOut = NULL, a new one is created. Its name is newName. It returns, the
vector result or NULL in case of error. If vectOut != NULL, the newName argument is ignored. 
Supported types: all. 
Examples: 
    v3 = FrvCombine(2, 1.3, v1, 3.3, v2, NULL);  Is equivalent to v3= 1.3*v1 + 3.3*v2

FrvDelta 

Syntax: int = FrvDelta(FrVect* vect, double *delta, double *previouse) 
This function computed maximum value of the differentiate vector:  delta = max(abs(data[i+1] - data[i])). The result
is return in delta. If previous != NULL, the corresponding value is used to differentiate the first vector element. On
return, previous holds the value of the last vector element. This function returns zero for successful completion and
a non zero value in case of error. 
Supported types: all non complex. 

FrvDivide

Syntax: FrVect* = FrvDivide(FrVect* vect1, FrVect* vect2, FrVect* vectOut, char* newName) 
This function computed vectOut= vect1/vect2 elements by elements after checking the division by 0. ( if the
denominator is zero then the result is set also to 0. The vector vectOut could be vect1 or vect2. If vectOut =
NULL, a new one is created called newName. This function returns, the vector result or NULL in case of
error. 
Supported types: all. 

FrvFlatten

Syntax: FrVect *FrvFlatten(FrVect *vect1, FrVect *vectOut) 
This function puts vector extrema equal to zero, subtracting a straigth  line. 
The output is stored in vector vectOut, which should have the same size and type of vect1. 
If vectOut==NULL, vect1 is modified. 
Supported types: only signed  data types. 

FrvIntegrate

Syntax: FrVect *FrvIntegrate(FrVect *inVect, int n, char* newName) 
This function performs the "n"-order Integration (or Derivation if n<0) of a signal assumed to be in the
frequency domain. It takes as input a FrVect vector structure "inVect"  and DIVIDES it by omega^n (omega
= 2.pi.i.dx[0]). A new vector of type FR_VECT_8R (double) is created with name "newName" or the same
name as the input vector if newName == NULL. 

5 sur 19 03/03/2004 17:09

Frv Library Documentation file:///C|/Documents and Settings/mours/Bureau/Frv.html



Allowed "n" values: 

n=0 trivial case: no operation is performed 
n>0 input spectrum is INTEGRATED n times 
n<0 input spectrum is DERIVED n times (i.e. it is MULTIPLIED by omega^abs(n))

This function returns the resulting vector or NULL in case of error. 
Supported types: all non complex. 

FrvMean

Syntax: double Int = FrvMean(FrVect* vect, double *mean) 
This function computes the mean value of the input vector vect. The result is put in mean. It returns 1 in case
of failure (vector not found), or 0 in case of success. 
Supported types: all non complex types 

FrvModulus

Function prototype: FrVect* = FrvModulus(FrVect *vectIn, FrVect* vectOut, char *newName) 
This function computes the modulus of a complex vector vectIn. The result is stored in vectOut, a real vector
(Float or Double according to the complex type of vectIn). 
If vectOut = NULL, a new one is created. Its name is  newName or 'module(vectIn->name)' if newName =
NULL. 
It returns, the vector result or NULL in case of error. 
Supported types: works only for complex. 

FrvMult

Syntax: FrVect* = FrvMult(FrVect* vect1, FrVect* vect2, FrVect* vectOut, char *newName) 
This function computes vectOut= vect1*vect2 elements by elements. ( this is not a matrix multiplication); The
vector vectOut could be vect1 or vect2. If vectOut = NULL, a new one is created. Its name is then newName.
It returns, the vector result or NULL in case of error. If vectOut = NULL, the newName argument is ignored. 
Supported types: all. 

FrvMultConj

Syntax: FrVect* = FrvMult(FrVect* vect1, FrVect* vect2, FrVect* vectOut, char *newName) 
This function computes vectOut= vect1*cc(vect2) elements by elements. ( this is not a matrix multiplication);
The vector vectOut could be vect1 or vect2. If vectOut = NULL, a new one is created. Its name is then
newName. It returns, the vector result or NULL in case of error. If vectOut = NULL, the newName argument
is ignored. 
Supported types: FR_VECT_C8 and FR_VECT_C16. 

FrvPhase

Function prototype: FrVect* = FrvPhase(FrVect *vectIn, FrVect* vectOut, char *newName) 
This function computes the phase of a complex vector vectIn. The result is stored in vectOut, a real vector
(Float or Double according to the complex type of vectIn). 
If vectOut = NULL, a new one is created. Its name is build as "phase(vectIn->name)" 
It returns, the vector result or NULL in case of error. 
Supported types: works only for complex. 

FrvRms

Syntax: double Int = FrvRms(FrVect* vect, doub vectOut could be vect1 or vect2. 

6 sur 19 03/03/2004 17:09

Frv Library Documentation file:///C|/Documents and Settings/mours/Bureau/Frv.html



If vectOut = NULL, a new one is created. Its name is then newName. 
It returns, the vector result or NULL in case of error. 
Supported types: all. 

FrvStat

This object compute an sliding mean and rms values. 
Syntax: FrvStat* = FrvStatNew() 
 or FrvStat* FrvStatProc(FrvStat *stat, FrVect *vect) 

FrvSub

Syntax: FrVect* = FrvSub(FrVect* vect1, FrVect*  vect2, FrVect* vectOut) 
This function computes vectOut= vect1- vect2. 
The vector vectOut could be vect1 or vect2. 
If vectOut = NULL, a new one is created. Its name is then newName. 
It returns, the vector result or NULL in case of error. 
Supported types: all. 

FrvZeroMean

Syntax: FrVect *FrvZeroMean(FrVect *vect1, FrVect *vectOut) 
This function subtracts the mean to  vect1. 
The output is stored in vector vectOut, which should have the same size and type of vect1. 
If vectOut==NULL vect1 data are modified. 
Supported types: only signed  data types. 

The Vector Buffering (FrvBuf)

The purpose of this object is to resize vector actracted from frame. It can provides vector concatenation and
support vector overlap, decimation and type changes. The suported vector type are all types excpet when
decimation is requested. 

Go to:   Using FrvBuf,FrvBufFree,FrvBufFeed,FrvBufGetNext, FrvBufInit,FrvBufNew,Back to Summary 

Using FrvBuf 

In this example, the input vectors are  extract from a frame file. New vectors are build .  See FrvBufNew for the
definition of the FrvBuf parameters. 

 buffer = FrvBufNew(outSize, outSize, -1, 0);  // create a buffer object 
 while((frame = FrameRead(iFile)) != NULL)     // loop on all frame from one file 
   {vect = FrameGetV(frame,"adc1");            // find the vector for ADC 'adc1' 
    FrvBufFeed(buffer, vect);                  // feed the buffer 
    while(FrvBufGetNext(buffer) == 0)          // is there a vector in the buffer? 
      {FrVectDump(buffer->output, stdout, 2);} // use the output vector 

An other example could be found in the file FrvBufTest.c. 

FrvBufFree

syntax: void FrvBufFree   (FrvBuf* buffer); 

7 sur 19 03/03/2004 17:09

Frv Library Documentation file:///C|/Documents and Settings/mours/Bureau/Frv.html



This function free the buffer object and all associated vectors, including the output vector. 

FrvBufFeed

syntax: int  FrvBufFeed   (FrvBuf *buffer, FrVect *vect); 
This function copy the input data to the internal buffer. The size of the iinputs vectors could change from
one call to the next one but the type need to be the same. 
It returns: 

0 if at least one output is ready 
1 if more call to FrvBufFeed are needed to get a complete output vector. 
2 in case of error 
3 in case of error due to timing missmatch 

FrvBufGetNext

Syntax: int FrvBufGetNext(FrvBuf *buffer); 
This function prepare the next output buffer available in buffer->output. 
It returns: 

1 if a call to FrvBufFeed is needed, 
0 if a vector is available 

FrvBufInit

Syntax: int FrvBufInit   (FrvBuf *buffer, FrVect *signal, FrVect *ref); 
This function initiliaze the output buffer according to vect type. The vector provided should be identical (for
the size and type point of view) to the one provide to FrvBufFeed. A call to this function is not mandatory
and is automatically performed at the first FrvBufFeed call. 
This function returns 1 in case of problem or 0 if everything is OK. 

FrvBufNew

Syntax :FrvBuf* FrvBufNew(int outSize, int step, int outType, int decimate, int delay); 
This function create an FrvBuf object. 
Arguments: 

outSize is the number of element of the vector output 
step is the element index shift performd at each new vector output. To get a 50% overlapp for the
output vectors, you need to set step = outSize/2. The get no overlapp at all, you need to set step =
outSize. 
outType is the output vector type (see the Frame spec.). -1 means use input vetor type. Warning: the
only type conversion supported are those leading to a FR_VECT_2S (short),  FR_VECT_4S (int), 
FR_VECT_4R (float), FR_VECT_8R (double). 
decimate is the output data rate reduction factor. For instance, decimate = 4 means that four elements
of the input vector are averaged to produce one element of the output vector. If decimate has a
negative value, a pure decimation of -decimate is performed without averaging. 
delay give the delay between the input vector and the output vector express in number of output
samples. 

Example: We give here some result for various parameters set. For all the cases, we assuming that we feed
the buffer with vector containing : 0, 1, 2, 3, 4, ... : 

for outSize=4 step=2 type=-1 decimate=0 the vectors returned are ( 0 1 2 3 ); ( 2 3 4 5);  (4 5 6 7);... 
for outSize=4 step=4 type=-1 decimate=0 the vectors returned  are ( 0 1 2 3 ); (4 5 6 7);  (8 9 10 11);... 
for outSize=4 step=4 type=-1 decimate=3 the vectors returned are ( 1 4  7  10 ); (13 16 19 21);  ( 24  27 
30  33 );... 
for outSize=4 step=2 type=-1 decimate=3 the vectors returned are ( 1 4  7  10 ); ( 7  10  13 16);  ( 13  16 
19  21 );... 

8 sur 19 03/03/2004 17:09

Frv Library Documentation file:///C|/Documents and Settings/mours/Bureau/Frv.html



The vector correlation: FrvCorr 
This object computes the correlation among  two vectors. The type of of the input vector could be any non
complex type, but the output vectors are of type FR_VECT_8R (double). 

FrvCorrNew

Syntax: FrvCorr* FrvCorrNew( int maxlag , int normalize) 
Creates a new FrvCorr structure 
If normalize ==0 the correlation is unbiased. 
Past values are set to zero. 

FrvCorrFree

Syntax: void  FrvCorrFree(FrvCorr* corr) 
This function frees the space allocated to correlation 

FrvCorrInit

Syntax: int FrvCorrInit(FrvCorr* corr, FrVect *vect1, FrVect *vect2) 
Initilizes the corr object: creates all output structures 
It is automatically called by FrvCorrProc 
Returns: 0 in case of success, >0 otherwise 

FrvCorrProc

Syntax: int FrvCorrProc(FrvCorr *corr, FrVect *vect1, FrVect *vect2) 
Calculates the correlation among vectors 1 and 2: 
 c[i]=Sum_k    v1[k]    v2[k+i] 
the correlation of the two vectors are stored in FrVect * corr->present 
the correlation averaged over consecutive frames is in FrVect * corr->average 
pointers to zero lag correlation are available in corr->present0  and corr->average0. 
If corr->normalize==0 the unbiased correlation is  calculated. 
For the first call, past values are set to zero: they are recorded  for subsequent calls 
and can be changed with FrvCorrSetIni

FrvCorrSetPast

Syntax: void FrvCorrSetPast(FrvCorr* corr, double * past1, double * past2, int flag) 
Set vectors past times conditions v1_[-n] = past1[n-1] 
if flag ==0 past times are set to zero. 

The linear filter: FrvLinFilt

This object filters the data for one vector. The type of of the input vector could be any non complex type, but the
output vector (named filter->output) is of type FR_VECT_8R (double). 

FrvLinFiltButt

Syntax: FrvLinFilt *FrvLinFiltButt( double fp, double fs, double tp, double ts, int order, double fc) 
Creates a FrvlinFilt object consinsting of a low pass butterworth filter. You can specify the filter using the
two set of parameters order, fc or fp,fs,tp,ts. 
if order>0, a filter of order "order" with a -3dB frequency equal to  fc in units of sampling frequency is

9 sur 19 03/03/2004 17:09

Frv Library Documentation file:///C|/Documents and Settings/mours/Bureau/Frv.html



created. Other inputs are ignored. 
if order=0  the filter order is calculated according to the parameters fp,fs,tp,ts, where: 

fp upper edge of pass band in units of sampling frequency. 
fs lower edge of stop band in units of sampling frequency. 
tp value of transfer function modulus at fp. 
ts value of trensfer function modulus at fs.

if order<0 and all the other parameters are different from zero, then the minimum order between the two
given possibilities is chosen. This option could be used to give an upper limit to filter length. 

FrvButtOrder

Syntax: int  FrvButtOrder(double fp,double fs,double tp,double ts,double *wc) 
For internal use: calculates order of a low pass Butterworth filter, plus parameter wc. 
Input: 

fp upper edge of pass band in units of sampling frequency. 
fs lower edge of stop band in units of sampling frequency 
tp value of transfer function modulus at fp. 
ts value of trensfer function modulus at fs.

Output: 

filter order N. 
wc parameter for butterworth filter. It is equal to tan(pi*fc) where fc is the frequency, in units of fs,
were the transfer function modulus is equal to sqrt(2).

FrvButtFilt

Syntax:  void  FrvButtFilt(int N, double wc, double * a, double * b) 
For internal use: given the filter order N and the parameters wc (see function FrvButtOrder for
explanation) calculates lowpass filter coefficients a,b. 

FrvButtCell

Syntax: void        FrvButtCell(double wc, int k, int N, double * a, double * b) 
For internal use: calculates the coefficient of an elemntary second order cell of a butterworth filter. 

FrvLinFiltButtLowToHigh

Syntax: void FrvLinFiltButtLowToHigh(FrvLinFilt * filter) 
Transforms a low pass Butterworth filter in an high pass one of the same order with the same cut-off
frequency. 
Gain is set to 1 for the Nyquist frequency. 

FrvLinFiltFree

Syntax: void FrvLinFiltFree(FrvLinFilt* filter) 
Comment:This function frees all the memory associate to the FrvLinFilt object. 

FrvLinFiltInit

Syntax: int FrvLinFiltInit(FrvLinFilt* filter, FrVect *vect) 
Initializes the filter object: creates all output structures. 

10 sur 19 03/03/2004 17:09

Frv Library Documentation file:///C|/Documents and Settings/mours/Bureau/Frv.html



Returns: 0 in case of success, 1 otherwise. 

FrvLinFiltSetIni

Syntax: void FrvLinFiltSetIni(FrvLinFilt* filter, double * ym, double * xm) 
Sets filter initial conditions x_n, n= -1.....-(na-1) y_m, m = -1....-(mb-1) 
These are stored in the order ym[0]=y_-1, ym[1]=y_-2....ym[na-2]=y_na-1 
xm[0]=x_-1, xm[1]=x_-2....xm[na-2]=x_mb-1

FrvLinFiltSetGain

Syntax: void FrvLinFiltSetGain(FrvLinFilt* filter, double freq, double gain ) 
Sets filter gain at frequency freq . 
freq is in sampling frequency units:

FrvLinFiltNew

Syntax: FrvLinFilt* FrvLinFiltNew(double * a, double * b, int na, int mb) 
Creates a new filter with coefficients a[0...na-1] and b[0...mb-1]. 
See FrvLinFiltProc to understand how the output is calculated. 
Initial conditions are set to zero: can be changed by FrvLinFiltSetIni

FrvLinFiltMult

Syntax: FrvLinFilt* FrvLinFiltMult(FrvLinFilt* filter2, FrvLinFilt* filter1) 
Multiplies filter1 and filter2 by convolution, and creates a new filter. 
If necessary, old filters can be freed by the user.

FrvLinFiltCopy

Syntax: FrvLinFilt * FrvLinFiltCopy(FrvLinFilt * filter0) 
Copies a filter to a new one. Filter output is not initialized. 

FrvLinFiltAddZP

Syntax: FrvLinFilt * FrvLinFiltAddZP(FrvLinFilt * filter0, double fase, double modulo, int type) 
Creates a new filter adding a single real zero or pole or a couple of complex conjugates ones in the Z plane 
fase  : zero-pole phase, in units of 2*pi,  or frequency in units of sampling frequency 
If it is zero or 0.5, only one is zero or pole is  added. 
modulo: zero-pole module. If it is a pole, and if modulo>1,   the filter is unstable 
type: 0 adds a zero 
type: 1 adds a pole only if it is stable 
type: 2 adds a pole stable or not.

FrvLinFiltProc

Syntax: int FrvLinFiltProc(FrvLinFilt *filter, FrVect *vect) 
 Applies the filter "filter" to the vector "vect". The output is stored in FrVect* filter->output . 
 It is calculated according to: 
a_0 * y_n = -Sum_(k=1...na) a_k *y_(n-k)+ Sum_(k=0...mb) b_k *x_(n-k) 
For the first call, initial condition are set to zero: they are recorded 
for subsequent calls and can be changed with FrvLinFiltSetIni.

The input vector is unchanged by this call. 
It returns 0 in case of successfull completion. 

11 sur 19 03/03/2004 17:09

Frv Library Documentation file:///C|/Documents and Settings/mours/Bureau/Frv.html



FrvSmartDecimate

This object perform a multistep decimation. 

Example: The initialization of the filter bank:: 

FrvSmartD *SDep01=FrvSmartDInit(10,50.,2.,0.99,0.001);

This ask to decimate of a factor ten starting from 50 Hz. 
The frequencies up to 2 Hz are attenuated a maximum of 0.99 and the frequencies which are aliased in the
frequency band up to 2 Hz are attenuated at least by a factor 0.001 . 

Processing: 

FrvSmartDProc(SDep01,vector,NULL);

The second order filter: FrvFilter2

This object filter the data for one vector. The type of of the input vector could be any non complex type, but the
output vector (named filter->output) is of type FR_VECT_8R (double). 

FrvFilter2Free

Syntax:    void FrvFilter2Free(FrvFilter2* filter) 
Comment:This function free all the memory associate to the FrvFilter2 object. 

FrvFilter2Init

Syntax: int FrvFilter2Init   (FrvFilter2 *filter, FrVect *vect); 
This function initiliaze the filter (especially the filter->output vector) according to vect type. The vector
provided should be identical (for the size and type point of view) to the one provide to FrvFilter2Proc. A call
to this function is not mandatory and is automatically performed at the first FrvFilter2Proc call. 
This function returns 0 in case of success or 1 in case of problem. 

FrvFilter2New

Syntax:    FrvFilter2* FrvFilter2New(double a2,double a1,double a0, double b2,double b1,double b0har
option) 
This fonction create an FrvFilter2 Object. It returns NULL in case of problem. 
The 6 filter parameters are defined in the following way: The transfer function (Laplace transform s=i*w)
is: 
        Yout(s)     a2 * s**2 + a1 * s + a0 
        ------- =  ------------------------ 
        Yinp(s)     b2 * s**2 + b1 * s + b0 

    Example 1 : first order low-pass filter at f0 with unity gain at dc 
                a2=0.  a1=0.  a0=1.  b2=0.  b1=1/(2*pi*f0)  b0=1. 

    Example 2 : second order low-pass filter at f0 with quality factor Q 
                and unity gain at dc (e.g. pendulum) 
                a2=0. a1=0. a0=1. b2=1/(2*pi*f0)**2  b1=1/(2*pi*f0*Q)  b0=1 

    Example 3 : integrator with time constant t 
                a2=0. a1=0. a0=1. b2=0. b1=t b0=0.

12 sur 19 03/03/2004 17:09

Frv Library Documentation file:///C|/Documents and Settings/mours/Bureau/Frv.html



FrvFilter2Proc

Syntax:     int FrvFilter2Proc(FrvFilter2 *filter, FrVect *vect) 
Apply the filter algorithm to the input vector vect. 
The input vector is unchanged by this call. 
It returns 0 in case of successfull completion. 

The Fast Fourrier Transform (FFT) for Real Vector (FrvRFFT) 

This Fast Fourrier Transform FFT object use FFTW. It works with real vector for the direct FFT, the Fourrier
Tranform in this case is 'halfcomplex' (the negative-frequency amplitudes for real data are 
the complex conjugate of the positive-frequency amplitudes) but the result is stored has a standard complex
vector. All internal compuation are done in double precision. The results are also stored in double precision. 

Remark: The FFTW  is no more included in the Frv distribution.  You need first to install FFTW. 

FrvRFFTFree

Syntax:    void FrvRFFT (FrvFFT* fft) 
Comment:This function free all the memory associate to the FFT object. 

FrvRFFTFor

Syntax:     FrvFFT* FrvRFFTFor(FrvFFT *fft, FrVect *vect) 
Performed the forward FFT algorithm "fft" to the vector "vect". Returns the result in the FrvFFT structure
as output (vector fft->output). The input vector has to be real. The output vector (fft->output) will be a
complex. If on input fft=0, builds a standard fft structure from the vector vect  with the option = "AHNPS".
This function returns NULL in case of error. 
The input vector is unchanged by this call. 

FrvRFFTInit

Syntax:    void FrvRFFTInit(FrvRFFT* fft, FrVect *vect) 
This function initiliaze the FFT (especially the fft->output vector) according to vect type. The vector
provided should be identical (for the size and type point of view) to the one provide to FrvRFFTFor. A call
to this function is not mandatory and is automatically performed at the first FrvFFFTFor call. 
This function returns 0 in case of success or 1 in case of problem. 

FrvRFFTNew

Syntax:    FrvFFT* FrvRFFTNew(char *option,  int fftSize, int decimate) 
This fonction create an FFT Object. 

The option string could be set to NULL or could contain one of the following character: 
   H  to apply an hanning window (normalized to not change the amplitude) 
   O  to overlapp the data by half a vector. This is usefull if you work on a continous stream with an
Hanning window. 
   P  to supress the pedestal (average value) 
   S  to compute the spectrum (amplitude) 
   A  to compute the  average spectrum (this force the use of the option S).Remark: the averageing is
done on the power (amplitude**2). 
   N to normalized the result as if it's noise (i.e. unit are  by sqrt(Hz)). The default units are absolute
units. 
Example: option = "HS"means hanning window+amplitude spectrum computed 
ffSize is the number of points (after the optional decimation) used to computed the fft. If fftSize < 1, the

13 sur 19 03/03/2004 17:09

Frv Library Documentation file:///C|/Documents and Settings/mours/Bureau/Frv.html



number of point used is the input vector size 
decimate is the decimation factor apply before the fft. For example, decimate = 4 means that 4 values of
the input vector will be averaged togheter before entering the fft algorithm. 

Storage: If the input vector as nData elements, the FrvFFT use at 2*nData double(or float if option bit 6 =
1). The function will reserve nData double(or float) for each spectrum computed or if a window is used. 
Comment on the FFT normalization: Normalization is computed for single sided spectrums (negative
frequencies folded on the positive one). With this convention: 

When we are loking at noise (option “N” used, i.e. units are 1./sqrt(Hz)) the average level for a
gaussian noise with an rms value = A*sqrt(sampleRate) (in the time domain) is A*sqrt(2) (in the
frequency domain) 
When we are looking at a signal (absolute unit, i.e. no option “N”) then for a sine wave of amplitude A
(in the time domaine) the FFT amplitude is A/sqrt(2) (this is the rms value for a sin function). 

FrvRFFTSetDecay

Syntax:    void FrvRFFTSetDecay(FrvRFFT* fft, double decay) 
This function change the default decay value used to computed the mean values of the amplitude spectrum.
If previous is the previous value and last the last computed value, decay is defined as: 

mean = decay*previous + (1-decay)*last
So decay should be in the range 0 to 1. 
Remark: as long as the number of FFT is less than 1/decay, we perfomed only a plain averaged on the total
number of fft (ie decay = 1./nFFT). 
The default value for decay is 0.99 
This function returns 0 in case of success or 1 in case of problem. 

The Transfer function computation (FrvTF)

This object compute a transfer function, assuming the the input signal has wide band noise.The useful FrVect
members are: 

tf->output         The complex transfer function 
tf->modulus     The module of transfer function 
tf->phase         The phase of the transfer function 
tf->correlation  The correlation in the frequency domain 
tf->errorM      The error on the modulus of the transfer function (if option 'E' is used) 
tf->errorP        The error on the phase of the transfer function (if option 'E' is used) 
tf->coherence  The coherence (if option 'C' is used) 

FrvTFError

Syntax:    void FrvTFError(FrvTF* tf) 
Comment:This function compute the transer function errors. It is automatically called by FrvTFProc
is the option 'E' has been used when creating the TF object. 

FrvTFFree

Syntax:    void FrvTFFree(FrvTF* tf) 
Comment:This function free all the memory associate to the FrvTF object. 

FrvTFInitor could contain one of the following character:   C  to compute the coherence
    E to compute the error in the transfer function modulus and phase.
Example: option = "C"means the coherence will be computed

tfSize is the number of points (after the optional decimation) used to computed the TF. If tfSize < 1, the number of point

14 sur 19 03/03/2004 17:09

Frv Library Documentation file:///C|/Documents and Settings/mours/Bureau/Frv.html



used is the input vector size 
decimate is the decimation factor apply before the fft. For example, decimate = 4 means that 4 values of the input vector
will be averaged togheter before entering the fft algorithms. Decimate=0 means no decimation. 
Storage: If the input vector as nData elements, the FrvFFT use at 2*nData double(or float if option bit 6 = 1). The
function will reserve nData double(or float) for each spectrum computed or if a window is used. 

FrvTFProc

Syntax:     int FrvTFProc(FrvTF *tf, FrVect *ouput, FrVect *inputNoise) 
Compute the transfer function define as the ratio between the FFT of the input noise and output signal. The transfert
function module (vector tf->modulus) is computed as the ratio between the mean amplitude of each FFT. The
transfert function phase is the mean vaule of the phase extracted from each transfer functions. 
The input vector is unchanged by this call. 
It returns 0 in case of successfull completion. 

FrvTFSetDecay

Syntax:    void FrvTFSetDecay(FrvTF* tf, double decay) 
This function change the default decay value used to computed the mean modulus and the phase.If previous is the
previous value and last the last computed value, decay is defined as: 

mean = decay*previous + (1-decay)*last
So decay should be in the range 0 to 1. 
Remark: as long as the number of call is less than 1/decay, we perfomed only a plain averaged on the total number
of fft (ie decay = 1./nCall). 
The default value for decay is 0.999 
This function returns 0 in case of success or 1 in case of problem. 

Library installation

Before installing Frv, you need first to install FFTW version 3. 

The latest version of the Frv library could be found in wwwlapp.in2p.fr/virgo/frameL. Assuming that you have
downloaded the gzip tar file for the library, you need to: 

unzip the file by using the command gunzip Frv.tar;gz 
untart the file by using the command tar xvf Frv.tar 
go in the mgr directory and change in the script "makesh" the path to 

the frame Library (FR)(should be at least version v6r00) 
the FFTW library 
the rootLibrary (ROOTSYS)  (Or comment the root part if root is not installed) 

then run the script "makesh" 

For any question, e-mail to mours@lapp.in2p3.fr 

The ROOT interface

Like for the frame library, a ROOT compatible shared library is available. To use it, you need to you need to update the
PATH and  LD_LIBRARY_PATH to include the FrvROOT.so binary directory (named by your system). Then if you
start root from the Frv/vXX/root subdirectory, it will execute the FrvLogon.C which load everything you need. 

Example of ROOT macros are available in the root subdirectory. Play with them to get an idea of what you could do. 

15 sur 19 03/03/2004 17:09

Frv Library Documentation file:///C|/Documents and Settings/mours/Bureau/Frv.html



Copyright and Licensing Agreement:

This is a reprint of the copyright and licensing agrement of the Frv Library: 

Copyright (C) 2002, B. Mours. 

Frv Library Software Terms and Conditions 

The authors hereby grant permission to use, copy, and distribute this software and its documentation for any purpose,
provided that existing copyright notices are retained in all copies and that this notice is included verbatim in any
distributions. Additionally, the authors grant permission to modify this software and its documentation for any purpose,
provided that such modifications are not distributed without the explicit consent of the authors and that existing copyright
notices are retained in all copies. Users of the software are asked to feed back problems, benefits, and/or suggestions
about the authors. 
Support for this software - fixing of bugs, incorporation of new features - is done on a best effort basis. All bug fixes and
enhancements will be made available under the same terms and conditions as the original software, 

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS
SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN IF THE AUTHORS HAVE
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 

 THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, AND THE
AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS. 

History

Version v4r11 (March 03, 2004) 
Thanks to Damir Buskulic, Leone Bosi and Frederique Marion  for suggestions, finding and reporting problems and bugs.

Update the requirement file 
FrvCopyTo: Fix C++ style comments and handle FFTW malloc. 

Version v4r10 (January 12, 2004) 
Thanks to Leone Bosi and Frederique Marion  for suggestions, finding and reporting problems and bugs. 

FrvFFT: Move to FFTW3 
FrvRFFTFor: Now this function returns NULL in case of error. 
FrvCopyTo: This function now handle the complex and hermitian types. 
FrvCopy.h, FrvMath.h: Protect a define agains multiple inclusion 
FrvModulus and FrvPhase: rewrite to work now with hermitian vectors (FR_VECT_8H and FR_VECT_16H) 
FrvMult handle now the  hermitian vectors (FR_VECT_8H and FR_VECT_16H) 
Add the functions: FrvInterpolate, FrvInterpolatePhase, FrvFillGaus,  FrvGaus, FrvUniform. 
 

Version v4r02 (February, 2003) 
Thanks to Michele Punturo and Frederique Marion  for suggestions, finding and reporting problems and bugs. 

FrvBuff: Support now a negative value for decimate to tell to do a true decimate without averaging 
Build a debug version of the library in the standard makescript 

16 sur 19 03/03/2004 17:09

Frv Library Documentation file:///C|/Documents and Settings/mours/Bureau/Frv.html



Version v4r01 (December 2, 2002) 
Thanks to Damir Buskulic,  Isidoro Ferrante, Frederique Marion  Jean-Marie Teuler and Gabriele Vedovato for
suggestions, finding and reporting problems and bugs. 

FrvBuff 
Fix a bug in FrvBufIni: when decimation was applied, the output vector time step was not updated. 
Allow a call of FrvBufStillToGo after a new and before a first feed. 
Fix the type of the lastGTime variable (int->double). 

FrvFFT 
Update the normalisation in case of decimation according to the change made in FrvBufIni. 
Increase the default decay time to .999999 

FrvMath: improve FrvStat to work even if the size of the input vector has changed. 
FrvBufTest: fix a compilation error. 
FrvLinFilt.c: update doc for Butterworth filter. 
FrvFilter: Add "next" element to support linked list storage. 

Version v4r00 (Auguste 12, 2002) 

Convert to Frame format version 5 and frame library version v5r00 and higger 

Version v3r30 (July 15, 2002) 

FrvMath: 
add the FrvStat object 
add the FrvIntegrate function 
add a protection in FrvCombine (for malloc failed) 

FrvCorr.c fix bug if the type of the second vector is not the same as the type of the first vector and in the
normalization. 
FrvLinFilt.c 

Add the function FrvLinFiltButtLowToHigh 
Fix a bug in the initialization of filter with na or nb <= 1. 

FrvTFTest.c: fix RAND_MAX definition and the number of arguments for FrvTFNew. 
testFT.cc: add a missing ';' 
FrvBuffFree: add protection when the object was never used. 
FrvMath.c: 

Add the FrvIntegrate function 
Add protection for malloc failed in FrvAdd, FrvCombine2, FrvDivide,FrvMult, FrvScale, FrvMulConj 

Version v3r20 (May 2, 2002) 

FrvTF: 
Rename the "numerator" vector to "correlation" 
Fix a normalization error for the TF error. 

FrvLinFilt: Add optimized code for Butterworth filter up to order 6. 

Version v3r10 (March 20, 2002) 

FrvFFT: 
Fix a bug in the normalisation when the decimation option was used. 

FrvTF: 
Fix a bug which was producing a segmentation fault if the coherence option was not used. 
Add a protection to allow the use of decimate <= 0. 
Add the function FrvTFFree and FrvTFError. 
Add the option 'E' to compute the error on the transfer function. 

17 sur 19 03/03/2004 17:09

Frv Library Documentation file:///C|/Documents and Settings/mours/Bureau/Frv.html



FrvLinFiltButt: initialize all variables. 
makesh: Update the script to fix some ROOT problem. Add also the file src/FrvLinkDef.h 
root/testTF.cc 

Fix a bug in the FrvTF call 
Change the random generator to be machine independant. 
rename FrvROOT.so to libFrvROOT.so 

remove the source code of FFTW 
Add the object FrvSmartDecimate (new file) 

Version v3r00 (November 22, 2001) 

FrvCopy: 
Propgate time information in FrvClone and FrvCopy 
Protect FrvClone against null input vector. 
Remove FrvDecimate (function replaced by FrVectDecimate). 

FrvMath: 
remove the function FrvMinMax which is now part of the FrameLib. 
Add  the functions FrvMultConjc, FrvZeroMean, FrvFlatten, FrvBias. 
Fix a bug in FrvPhase (the sign of the phase was wrong). 

FrvFFT: 
Fix a bug when computing the average amplitude. (the average was done on the amplitude, not the power). 
Fix a bug on the overall amplitude (it has been reduce by a factor sqrt(2)). 

FrvTF: 
Fix a bug when computing the average amplitude. (the average was done on the amplitude, not the power). 
Add the option to compute the coherence. WARNING:The API for FrvTFNew has been changed (add the
option field). 

Add the modules FrvCorr and FrvLinFilter 
Change the installation script to an sh scrit. (mgr/makesh). 
FrvBuf: 

full rewrite. 
Check the time (GPS) constitance for the input vector if this infomration is available. 
Add the possibility to add a delay between the input and output vectors. WARNING: the API for FrvBufNew
has been changed (add the delay paramters) 

Version v2r10 (April 22, 2001) 

Fix a bug in FrvTF.c : the code was not working properly if decimation was used. 
Fix a bug in FrvFFT.c the imaginary part of the FFT for on point was stored in the next points. This was introducing
a small bias in the FFT and sometime a crash. 
Upgrade FrvBufFeed to be able to change the size of the input vector from one call to the next one. 

Version v2r02 (Jan 16, 2001) 

Fix a bug in FrvFFT.c (the function crash if the vector had not unitY label). 
Fix a bug in FrvTF.c (the  output vector was not properly initilazed). 
Fix a bug in FrvBuf.c (the step performed was not correct when decimation was apply). 
Remove the function FrameFnR (replace by FrameReadRecycle from Fr). 

Version v2r01 (Jan 11, 2001) 

Add the function FrameFnR. This function will be move in the future to the FrameLib. 

Version v2r0 (Jan 10, 2001) 

18 sur 19 03/03/2004 17:09

Frv Library Documentation file:///C|/Documents and Settings/mours/Bureau/Frv.html



Start history 

19 sur 19 03/03/2004 17:09

Frv Library Documentation file:///C|/Documents and Settings/mours/Bureau/Frv.html


