Frame Library User’s Manual

VIR-MAN-LAP-5400-103

Version 3.85

September 11, 1999

1. Introduction

A frame is a unit of information containing all the information necessary for the understanding of the interferometer behavior over a finite time interval which integrates several samplings. It contains thus not only the sampling performed during the integrated time interval, but also those performed at a frequency smaller than the frame frequency.

To simplify its manipulation, a frame is organized as a set of C structures described by a header holding pointers to additional structures and values of parameters expected to be stable over the integrated time interval: the starting time of the frame, its duration, values produced by the slow monitoring. This header is followed by an arbitrary number of additional structures, each holding the values of a rapidly varying parameter like the main signal, the seismic noise, etc...

This frame structure is a standard which has to be conserved over the various stages of the analysis. Thus Frame history, detector geometry, trigger results, monitoring data, reconstructed data, simulation results just lead to additional structures. It is always possible to add new structures or to drop old ones.

This standard format is the one used by the LIGO and VIRGO Gravitational Wave Detectors. This Document described the software used to manipulate the frames. The definition of the various structures as well as their representation on tape is described in specification document
.

The C structures used by The FrameLibrary

The data are stored in a set of C structures described in the document ‘Specification of a Common Data Frame Format for Interferometric Gravitational Wave Detector (IGWD)’ (VIR-SPE-LAP-5400-102 and LIGO-T970130-B). The variable names of the C structures are exactly the one given in this document.

In the case of the VIRGO data, the Slow Monitoring information are stored in the FrSerData structure as readable ASCII characters with self explanatory description. The format used is the following where all the words are separated by a space:

A header:

- SMS station name (4 characters) (see section on standardization)

- the day of the year (ddd)

- time with the format: hhmmss

- 'ALL' if all data are sent or 'UPD' if it is an update only for changed parameters

- time interval since last update in second

- time interval between the DAQ request and the measurement (in second)

Data blocks for each data:

- the data name

- the data value starting with 1 character given the data type:

• i for integer

• e for exponent

• f for float

• s for a string (could be a quoted string)

• v for a vector. in this case the vector size is given just after v and

 is followed by the values. Example: v3 i20 i23 i19

• o for open (for a valve) or for on (a pump for instance)

• c for close or for off

A end of data trailer:

- the 'EndOfData' string

Example:
TOBS 123 084521 UPD 20 1

G31 e5.01e-8

G32 e2.34e-6

SamplInt i200

CPartCh1 i32222

EndOfData

These data come from the slow monitoring station TWBS (tower control for the beam splitter). The data have been sent the day 123 at 8h45m21s. It is a data update over a 20 s. interval. Four data values are send. Unlike on this figure no newline character need to be included in the message.

Library usage

The main step of the FrameLib usage are described in the next sections.

1.1. Library initialization:

• The Frame library do not need special initialization. However, if you want to change the default debug level(0) or the default output file used to print debug information (stdout) you should call:

FILE *FrLibIni EX "FrLibIni" (char *outFile, FILE *fOut, long dbglvl);

where:
outFile
is the output file name provided by the user

fOut

this should be used only if the user wants to send out the debug

information on an already opened file. Then he should

provide this pointer. In this case, outFile should be NULL.

dbglvl
is the debug level provided by the user. This is used only for internal and

technical debug. Usually you can use 0.

0 means no output at all

1 gives a minimal description

2,3 give more information

The return argument is the pointer to the file opened. If the output file could not be opened the debug information is sent on stdout and the return argument is stdout. In case of severe error due to insufficient space, the return value is NULL and the user should not go further.

• One can change the debug level at any time by using:

void FrLibSetLvl EX "FrLibSetLvl" (long dbglvl);

where: dbglvl is the debug level provided by the user with the same meaning as in FrLibIni.

• One can get the Library version by using:

float FrLibVersion EX "FrLibVersion" (FILE *fOut);

It returns the version number (like 3.70). If fOut is not NULL it print also on fOut some debugging information.
1.2. Vectors manipulation

• To create a multi dimension vector:

struct FrVect *FrVectNew EX "FrVectNew" (long type, long nDim, ...);

The parameters (provided by the user) are:

type

the type of data stored. It could be one of the following value:

FR_VECT_C, /* vector of char */

FR_VECT_2S, /* vector of signed short */

FR_VECT_4S, /* vector of signed int */

FR_VECT_8S, /* vector of signed long */

FR_VECT_1U, /* vector of unsigned char */

FR_VECT_2U, /* vector of unsigned short */

FR_VECT_4U, /* vector of unsigned int */

FR_VECT_8U, /* vector of unsigned long */

FR_VECT_8R, /* vector of double */

FR_VECT_4R, /* vector of float */

FR_VECT_8C, /* vector of complex float (2 words per number)*/

FR_VECT_16C, /* vector of complex double(2 words per number)*/

FR_VECT_S; /* vector of string *

FR_VECT_2U, /* vector of unsigned short */

 (the corresponding number of bytes per vector word is given by the variable wSize)

nDim

the number of dimension (1 for a vector, 2 for an image,...)

nx[0]

The number of element for each dimension (0 is a valid value)

dx[0]

The step size for each dimension

unitX[0]
The unit for each dimension .

Then, additional parameters for multi dimension vectors:

nx[1], dx[1], unitX[1], nx[2],...
This function return NULL in case of problem (not enough memory). After creation, all the different type of pointer in the FrVect structure point to the same data area. The names of these pointers are:

char *data;

short *dataS;

int *dataI;

long *dataL;

float *dataF;

double *dataD;

unsigned char *dataU;

unsigned short *dataUS;

unsigned int *dataUI;

unsigned long *dataUL;

For example to create a vector to hold image from a CCD camera (2 dimension vector of 512x512 pixels of 15 microns):

vect = FrVectNew EX "FrVectNew" (FR_VECT_2S,2,512,15., ”microns”,512,15., ”microns”);
• To create a one dimension vector:

struct FrVect *FrVectNew1D EX "FrVectNew1D" (char *name, long type, long nData,

 double dx, char *unitX, char *unitY);

The parameters (provided by the user) are:

name

the name of the vector

type

the type of data stored (see FrVectNew).

nData

The number of elements (0 is a valid value)

dx

The step size

unitX

The step unit (NULL is a valid value) .

unitY

The content unit (NULL is a valid value) .

• To free a vector and its memory allocated space:

void FrVectFree EX "FrVectFree" (struct FrVect *vect);

• To duplicate a vector and its data:

struct FrVect *FrVectCopy EX "FrVectCopy" (struct FrVect *in);

This function returns NULL in case of problem (not enough memory).

• To dump a vector in a readable format:

void FrVectDump EX "FrVectDump" (struct FrVect *vect, FILE *fp, long debugLvl);

where:
vect

is the vector provided by the user

fp

is the file pointer where the debug information will be send.

dbglvl
is the debug level provided by the user

0 means no output at all

1 gives a minimal description (<5 lines per frame)

2,3 give more information (not implemented)
• To compress a vector:

void FrVectCompress EX "FrVectCompress" (struct FrVect *vect, int compress, int gzipLvl);

where:
vect

is the vector provided by the user

compress
is the type of compression:

· 1 for gzip,

· 3 for differentiation and gzip.

· 5 for differentiation and zeros suppress (only for short)

· 6 for differentiation and zeros suppress for short and gzip for other

gzipLvl
is the gzip compression level (provided by the user)

• To uncompress a vector:

void FrVectExpand EX "FrVectExpand" (struct FrVect *vect);

where:
vect

is the vector provided by the user
1.3. Frame creation

• To create a new Frame you should use the function:

struct FrameH *FrameHNew EX "FrameHNew" (char *name);

were name is the frame name stored in the FrameH structure (frame header). The space for the FrameH structure is allocated in the FrameHNew function. The value NULL is returned in case of problem.

• To delete a frame and to free all the corresponding memory space you should use the function:

void FrameFree EX "FrameFree" (struct FrameH *frame);

were frame is the pointer to the frame header structure.

• To dump a frame in a readable format:

void FrameDump EX "FrameDump" (struct FrameH *frameH, FILE *fp, long debugLvl);

where:
frameH
is the frame pointer provided by the user

fp

is the file pointer where the debug information will be send.

dbglvl
is the debug level provided by the user

0 means no output at all

1 gives a minimal description (<5 lines per frame)

2,3 give more information

• To dump a frame in a readable format like FrameDump but in an internal buffer:

void FrameDumpToBuf EX "FrameDumpToBuf" (struct FrameH *frameH, long debugLvl,

 char *buf, long bufSize);

where:
frameH
is the frame pointer provided by the user

dbglvl
is the debug level provided by the user

buf

is the buffer space provided by the user.

bufSize
is the size of buf.
This function returns a pointer on the beginning of the printable area of buf.

• To copy a whole a frame:

struct FrameH *FrameCopy EX "FrameCopy" (struct FrameH *frameH);

where:
frameH
is the input frame pointer provided by the user

This function copy a frame and return the pointeur to the new FrameH structure. This means it allocate the memory for the full tree of structures. The input frame is unchanged.
• To copy only a FrameH structure:

struct FrameH *FrameHCopy EX "FrameHCopy" (struct FrameH *frameH);

where:
frameH
is the input FrameH structure provided by the user

This function copy only the frameH structure returns the pointeur to the new FrameH structure. The input frame is unchanged.
1.4. ADC’s data manipulation

• To allocate the space for the data of an ADC, and to attach it to the FrameH structure (including the creation of the FrRawData structure if does not yet exist) use:

struct FrAdcData *FrAdcDataNew EX "FrAdcDataNew" (struct FrameH *frame, char *name,

double sampleRate, long nData, long nBits);

The parameters (provided by the user) are:

frame

is the pointer to the root frameH structure. It creates the FrRawData

structure if needed. frame = NULL is a valid option.

name

is the ADC name. This name should be unique within a frame for all ADC

structures. If not this function returns NULL.

sampleRate
is the sampling frequency in Hz

nData

is the number of data for this ADC within a frame

nBits

is the number of bits used to store the information. The word length will

be either 1, 2, 4 (or 8) bytes. A negative values means that we store

floating point number (nBits = 12 short, nBits =-32 float of

4 bytes). The space for the corresponding type of vector is reserved.

In case of probleme, the function returns NULL.

The user can add additional information (like units, channel,...) by directly filling the structure For instance to set the adc units (the units is attached to the data vector):

FrStrCpy EX "FrStrCpy" (adc->data->unitX[0], ”Volts”);

(the FrStrCpy macro allocates the needed space and calls strcpy)

To fill the adc data vector with values coded on 2 bytes:

for(i=0; i<adc->data->nData; i++)

{adc->data->dataS[i] = (the adc value);}

• To find an FrAdcData structure within one frame:

struct FrAdcData *FrAdcDataFind EX "FrAdcDataFind" (struct FrameH *frameH, char *adcName)

• To free the memory space allocated for one Adc:

struct FrAdcData *FrAdcDataFree EX "FrAdcDataFree" (struct FrAdcData *adcData)

it returns a pointer to the next adcData structure.

• To duplicate the information for one ADC:

struct FrAdcData *FrAdcDataCopy EX "FrAdcDataCopy" (struct FrAdcData *adcData, struct FrameH *frame)

it crates a new FrAdcData structure with the same information as the input FrAdcData structure. All associated information like the data vector is also duplicate. It returns the pointer to the new adcData structure. The new FrAdcData is attached to the frame provide by the user unless frame = NULL which is a valid option.

• To remove from a frame all the ADC except a limited number of channels:

void FrameSelectAdc EX "FrameSelectAdc" (struct FrameH *frame, int nAdc, char *adc1, ...)

this function removes and free the memory space for all Adc channels except for those listed in the argument list. The nAdc argument is the number of ADC channel provided in the argument list. The names of all selected ADC follows. For instance the call to:

void FrameSelectAdc(myframe, 2, ”adc4”, ”adc9”)

will remove from the frame myframe all ADC except the ADC named: adc4 and adc9.

1.5. Adding more data to a Frame

• History records could be added at any time by using:

struct FrHistory *FrHistoryAdd EX "FrHistoryAdd" (struct FrameH *frame, char *comment);

A time stamp is automatically added. The string comment is provided by the user. Its format is free. If frame = NULL the history structure is created but not attached to the frame header. These history records are useful to keep track of the various frame processing. This function returns the pointer to the first History structure or NULL in case of malloc error.

• An online log message could be added to the frame by using the function:

struct FrMsg *FrMsgAdd(EX "FrMsgAdd(" struct FrameH *frame, char *alarm,

 char *message, unsigned int severity);

The string message as well as the alarm name are provided by the user. Its format is free. The severity value is provided by the user. frame = NULL is a valid option. This function returns the pointer to the FrMsg structure or NULL in case of malloc error.

• To add or find processed data:

struct FrProcData *FrProcDataNew EX "FrProcDataNew" (struct FrameH *frame,char *name,

 double sampleRate, long nData, long nBits);

struct FrProcData *FrProcDataFind(EX "FrProcDataFind(" struct FrameH *frame,char *recName)

Then a vector holding the data has to be provided and attached (FrProcData->data variable).
• To add or find simulated data:

struct FrSimData *FrSimDataNew EX "FrSimDataNew" (struct FrameH *frame, char *name,

 double sampleRate, long nData, long nBits)

struct FrSimData *FrSimDataFind EX "FrSimDataFind" (struct FrameH *frameH, char *simName)

Then a vector holding the data has to be provided and attached (FrSimData->data variable).
• To add or find serial data (slow monitoring data) to a frame:

struct FrSerData *FrSerDataNew EX "FrSerDataNew" (struct FrameH *frame,

char *smsName, unsigned int time, char *data);

struct FrSerData *FrSerDataFind EX "FrSerDataFind" (struct FrameH *frame, char *name);

• To add or find summary data:

struct FrSummary *FrSummaryNew EX "FrSummaryNew" (struct FrameH *frame, char *name,

 char *comment, char *test, struct FrVect *vect);

struct FrSummary *FrSummaryFind EX "FrSummaryFind" (struct FrameH *frame, char *name);

• To add or find trigger data:

struct FrTrigData *FrTrigDataFind EX "FrTrigDataFind" (struct FrameH *frame, char *name);

struct FrTrigData *FrTrigDataNew EX "FrTrigDataNew" (struct FrameH *frame, char *name,

 char *comment, char *inputs, unsigned int GTimeS,

 unsigned int GTimeN, unisgned int bvalue,

 float rvalue, float probability, char *stat,

 struct FrVect *data);

1.6. Writting Frames on File or Internal Buffer

• To open an output file:

struct FrFile *FrFileONew EX "FrFileONew" (char *fileName, unsigned short compress,

char *buf, long bufSize);

where:
fileName
is the output file name provided by the user

If fileName = NULL, then the frames will be written in the buffer (buf)

provided by the user.

compress
gives the compression algorithm used at writing time.

· -1 to write data without changing the initial compression state

· 0 for no compression,

· 1 for gzip,

· 3 for differentiation and gzip.

· 5 for differentiation and zeros suppress (only for short)

· 6 for differentiation and zeros suppress for short and gzip for other (recommended)

The level of gzip compression could be set by a call to

FrFileOSetGzipLevel EX "FrFileOSetGzipLevel" (level) with 0<level<10. The default value is level=1.

buf

is a buffer space needed by the frame library. It should be able to hold

the largest structure (usually a vector). So the typical size is 500k Bytes.

bufSize
size of buf.
The returned argument is the pointer to the output file opened or NULL in case of error.

Remark: The zero suppress algorithm (not yet described in the Frame standard) code the data in the following way :

a) Data are differentiate

b) the input data are split in blocs

c) a bloc size is selected and is written as unsigned short (2 bytes) as first word

d) for each bloc the minimal number of bits is determined and is written as a 4 bits and then the data follows as unsigned number of nb :

Example with bloc size = 3

Input vector :

82 85 85 81 80 82 84 45

differentiate data : 82 -3 4 -4 -1 2 2 1

Bloc 1 : (82 -3 4) nBits = 8,

Bloc 2 : (-4 –1 2) nBits = 4,

 ….

• To open an output file using an existing file descriptor:

struct FrFile *FrFileONewFd EX "FrFileONewFd" (int fd, unsigned short compress,

 char *buf, long bufSize);

where:
fd

is the output file descriptor provided by the user

compress
gives the compression algorithm used at writing time (see FrFileONew).

buf

is a buffer space needed by the frame library. It should be able to hold

one structure. So the typical size is at least 500k Bytes.

bufSize
size of buf.
The returned argument is the pointer to the output file opened or NULL in case of error.

• To write a frame on a file:

int FrameWrite EX "FrameWrite" (struct FrameH *frameH, struct FrFile *oFile);

This function write a frame on file (or in the internal buffer). It does not change the frame. It returns a value different from 0 (which is FR_OK) in case of error.

• To close an output file and free all the associated space:

void FrFileOEnd EX "FrFileOEnd" (struct FrFile *file);

• To write a Frame to an internal buffer named buf of size nBytes:

long FrameWriteToBuf EX "FrameWriteToBuf" (struct FrameH *frameH, unsigned short compress,

char *buf, long bufSize);

where:
compress
gives the compression algorithm used at writing time (see FrFileONew).

buf

is a buffer space needed by the frame library. It should be able to hold

the full frame.

bufSize
size of buf.

This function returns the number of bytes written or 0 in case of error.
1.7. Reading Frames from File or Internal Buffer

• To open an input file:

struct FrFile *FrFileINew(char *fileName);

where:
fileName
is the input file name provided by the user

If fileName = NULL, then the frame is read from the buffer buf.

This function returns a pointer to the input file or NULL if an error occurs. Notice that the string fileName could contain several file names. For instance the call to

FrFileINew(”file1.dat file2.dat”);

will open the file1.dat and when all the frames from this file will by read, it will automatically open the file file2.dat without any special action from the user. It is an easy way to concatenate files. But the multiple file access works only for continuous frame read, it do not work for random access.

Remark†: the old calling sequence†:

struct FrFile *FrFileINew(char *fileName, char *buf, long bufSize);

is still available. In that case, buf and bufSize are ignored.

• To open an input file using an existing file descriptor:

struct FrFile *FrFileINewFd EX "FrFileINewFd" (int fd);

where:
fd

is the input file descriptor provided by the user
This function returns a pointer to the input file or NULL if an error occurs.

• To read a frame from a file:

struct FrameH *FrameRead EX "FrameRead" (struct FrFile *iFile);

This function reads the next frame in the file and allocates all the needed space. It returns NULL in case of error or end of file.

If you want to turn off the uncompression during frame read you should type after the file opening:

iFile->compress = 1;

Then all the vectors will remain compress. A single vector could be uncompressed using the call:

FrVectExpand EX "FrVectExpand" (struct FrVect *vect);

• To close an input file and to free all the associated memory space:

void FrFileIEnd(EX "FrFileIEnd(" struct FrFile *file);

• To rewind a file:

struct FrFile *FrFileIRewind EX "FrFileIRewind" (struct FrFile *iFile);

It returns iFile or NULL if an error occurs.

• To read a Frame from an internal buffer named buf of size nBytes:

struct FrameH *FrameReadFromBuf EX "FrameReadFromBuf" (char *buf, long nBytes,

unsigned short comp)

If comp is not equal to 0, the frame is not uncompress if it is compressed.

1.8. Frame and ADC Random access

The version 3.80 as a prototype of a random access for frame and adc channels. WARNING: this is under evaluation. This is NOT yet part of the Frame standard. This option may not be supported in the future.

• To access a frame according its starting time

struct FrameH *FrameReadT(struct FrFile *iFile, double gtime, double dt);

The parameters (provided by the user) are:

iFile

is the pointer to the disk file.

gtime

is the GPS starting time

dt

is the time window used to search the frame around the starting time.

In case of problem, the function returns NULL.

• To access a frame according its number

struct FrameH *FrameReadN(struct FrFile *iFile, int runN, int frameN);

The parameters (provided by the user) are:

iFile

is the pointer to the disk file.

runN

is the run number

frameN
is the frame number.

In case of problem, the function returns NULL.

• To access an ADC according the frame starting time

struct FrAdcData *FrAdcDataReadT(struct FrFile *iFile,char *name,

 double gtime, double dt);

The parameters (provided by the user) are:

iFile

is the pointer to the disk file.

name

is the ADC name.

gtime

is the GPS strating time

dt

is the time window used to search the frame around the starting time.

In case of problem, the function returns NULL.

• To access an ADC according the frame number

struct FrAdcData *FrAdcDataReadN(struct FrFile *iFile, char *name,

 int runN, int frameN);

The parameters (provided by the user) are:

iFile

is the pointer to the disk file.

name

is the ADC name.

runN

is the run number

frameN
is the frame number.

In case of problem, the function returns NULL.

1.9. Manipulate Static data

A static data is a structure which may stay for more than one frame. It is written on tape only once. These data stay as long as they are valid compare to the frame time boundary, or as long there is not a new bloc of data with the same name but with an highest version number. In the case of long frames there could be several static data with the same name if they have different starting times which cover the frame duration.
• To create a static data bloc:

struct FrStatData *FrStatDataNew EX "FrStatDataNew" (char *name, char *comment,

unsigned int tStart, unsigned int tEnd,

unsigned int version, void *data)

where:
name

is the name of this bloc of static data.

comment
is some user information

tStart
is the starting time (GPS) of validity for this bloc

tEnd

is the end time (GPS) of validity for this bloc (tEnd = 0 means no end)

version
is the static data version number provided by the user

data

is the data bloc (like a vector) provided by a user.

• To attach a static bloc to a frame you should attach it to one detector structure.

void FrStatDataAdd EX "FrStatDataAdd" (struct FrDetector *detector,

 struct FrStatData *sData)

• When you update the content of a static data bloc you should tell the system by calling:

void FrStatDataTouch EX "FrStatDataTouch" (struct FrStatData *sData)

• To find a static bloc for one detector structure:

struct FrStatData *FrStatDataFind EX "FrStatDataFind" (struct FrDetector *detector,

char *name, unsigned int timeNow)

timeNow is the time for which we want the static data. If timeNow = 0 then the first static data with that name is return.

• To remove a static bloc from one detector structure and to free the corresponding space

void FrStatDataRemove EX "FrStatDataRemove" (struct FrDetector *detector, char *name)

1.10. Frame Library Error Handling

Sevral errors may occurs during the code execution. A typical one is the failure of the memory allocation. In this case, the functions return NULL. But when the error occurs, a default handler is called. This handler is the following:

/*--- FrErrorDefHandler---*/

void FrErrorDefHandler(level,lastMessage)

long level;

char *lastMessage;

/*--*/

/* default handler for the FrameLib error. */

/* input parameters: */

/* lastMessage: the string which contain the last generated message */

/* level: 2 = warning, */

/* 3 = fatal error: requested action could not be completed*/

/*--*/

{

 if(FrDebugLvl > 0)

 {fprintf(FrFOut,"%s",lastMessage);

 fprintf(stderr,"%s",lastMessage);}

 return;}

If the debug level (dbglvl) set by the call to FrLibIni has a value > 0 this handler print debug information on stderr and on the debug output file. This handler could be changed by the user at the initialisation by calling the function:

void FrErrorSetHandler EX "FrErrorSetHandler" (void (*handler)(long, char *));

 At any time the user can get the history of the errors (recorded in one string) by using the function:

char *FrError(0," ","get history");

Examples

A set of examples is provided with the frame library in the directory src. The different files are:

• exampleFull.c

creates and writes a few frames.

• exampleDump.c

dump on the screen a short summary of a frame file content

• exampleCopyFile.c
a simple copy file program.

• exampleCopyFrame.c
a simple copy frame program.

• exampleStat.c

produces several frames with static data

• exampleOnline.c

creates and writes in memory a few frames.

• exampleOnlineUpd.c
creates, writes and updates in memory a few frames.

• exampleMultiW.c
produces several frames in different files

• exampleMultiR.c
reads the various files produced by exampleMultiW.c

Here is the listing of some of these examples:

1.11. A complex frame: exampleFull.c

This example builds a few identical frames with several ADC’s and additional data. Then it writes the frame in a file.

/*---*/

/* File: exampleFull.c by B. Mours(LAPP) Sep 10, 99 */

/* */

/* This program creates a frame and write it on file */

/*---*/

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include "FrameL.h"

int main() /*-------------------- main-----------*/

{struct FrFile *oFile;

 struct FrameH *frame;

 struct FrAdcData *adc, *adc5;

 time_t utc;

 double sampleRate,phase;

 long nData,buffSize,i,j,nADC,sec,nData5;

 char *buff,name[100];

 /*------ initialisation -------------------------------*/

 if(FrLibIni("full.lis",NULL, 1) == NULL)

 {printf("Error during initialisation\n"

 " Last errors are:\n%s",FrErrorGetHistory());

 return(0);}

 /*----- create one Frame header and set its time-------*/

 frame = FrameHNew("demo");

 if(frame == NULL)

 {printf("Error during frame creation\n"

 " Last errors are:\n%s",FrErrorGetHistory());

 return(0);}

 frame->ULeapS = FRGPSLEAPS;

 utc = time(NULL);

 frame->localTime = mktime(localtime(&utc)) - mktime(gmtime(&utc));

 frame->GTimeS = utc - FRGPSOFF + frame->ULeapS;

 /*----- add 10 fast (20kHz) ADC with data provided

 y a random generator ------------*/

 sampleRate = 2.e+4;

 nData = 65536;

 frame->dt = nData/sampleRate;

 nADC = 10;

 for(i=0; i<nADC; i++)

 {sprintf(name,"fastAdc%ld",i);

 adc = FrAdcDataNew(frame,name,sampleRate,nData,16);

 if(adc == NULL) break;

 for(j=0; j < nData; j++)

 {adc->data->dataS[j] = (short) (rand());}}

 /*---- reserve space for slower (1250 Hz) ADC's ------*/

 nData = nData / 16;

 sampleRate = sampleRate/16.;

 nADC = 10;

 for(i=0; i<nADC; i++)

 {sprintf(name,"Adc%ld",i);

 adc = FrAdcDataNew(frame,name,sampleRate,nData,16);

 if(i == 5) {adc5 = adc;}}

 nData5 = nData;

 /*---- reserve space for very slow (1 Hz) ADC's -----*/

 nData = nData / 1024;

 sampleRate = sampleRate/1024.;

 nADC = 10;

 for(i=0; i<nADC; i++)

 {sprintf(name,"slowAdc%ld",i);

 FrAdcDataNew(frame,name,sampleRate,nData,12);}

 /*---- reserve space for various type of data ------*/

 FrAdcDataNew(frame,"D1",sampleRate,nData,-32);

 FrSimDataNew(frame,"sim1",sampleRate,nData,32);

 FrSerDataNew(frame,"sms1",0,"sms data are here");

 FrMsgAdd(frame,"test","no message",0);

 FrSummaryNew(frame,"Quality 1","main quality"," ",NULL);

 FrSummaryNew(frame,"Quality 2","aux"," ",NULL);

 FrTrigDataNew(frame,"trigger 1","Binary search","Main strain",

 0,0,0,1.,1.e-20,"match filtering",NULL);

 FrTrigDataNew(frame,"trigger 2","Binary search","Main strain",

 0,0,0,1.,2.e-20,"match filtering",NULL);

 /*----- dump on stdout the current frame ----------*/

 FrameDump(frame, stdout,3);

 /*----- open the output file in binary format

 with differentiation and compression ------*/

 buffSize = 500000;

 buff = malloc(buffSize);

 oFile = FrFileONew("ran.dat", 0, buff, buffSize);

 if(oFile == NULL)

 {printf("Error during output file creation\n"

 " Last errors are:\n%s",FrErrorGetHistory());

 return(0);}

 /*---------------------- output 10 frames -----------------*/

 /*(they are all identical except the frame number and Adc5) */

 for(i=0; i<10; i++)

 {

 for(j=0; j < nData5; j++)

 {phase = .023*(double)(j + i*nData5);

 adc5->data->dataS[j] = 273.*sin(phase) + (short)(rand())/1000;}

 printf(" output frame %d\n",frame->frame);

 if(FrameWrite(frame, oFile) != FR_OK)

 {printf("Error during frame write\n"

 " Last errors are:\n%s",FrErrorGetHistory());

 return(0);}

 frame->frame++;

 frame->GTimeS += (unsigned int) (frame->dt);

 frame->GTimeN += ((unsigned int) (1.e+9*frame->dt)) % 1000000000;

 sec = frame->GTimeN/1000000000;

 frame->GTimeS += sec;

 frame->GTimeN -= sec*1000000000;}

 /*----- close everything -------------------------*/

 FrFileOEnd(oFile);

 FrameFree(frame);

 return(0);

}

1.12. A program to dump the frame: exampleDumpFile.c

This example reads a file (the file name is the program argument). It dumps on screen all the frames found in the file.

/*---*/

/* File: exampleDumpFile.c by B. Mours (LAPP) Sep 14, 98 */

/* */

/* This program produces of short summary for each frame */

/* present in a file. The file name is the program argument */

/* An optional second argument is the debug level */

/*---*/

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <fcntl.h>

#include <stdarg.h>

#include "FrameL.h"

int main(int argc, char *argv[]) /*-------------- main ----*/

{struct FrFile *iFile;

 struct FrameH *frame;

 long debugLevel;

 /*--- increase the Debug level to see possible errors ---*/

 if(argc == 3)

 {sscanf(argv[2],"%ld",&debugLevel);}

 else {debugLevel = 1;}

 FrLibSetLvl(debugLevel);

 /*------------------------------------ file open---------*/

 iFile = FrFileINew(argv[1]);

 if(iFile == NULL)

 {printf("Cannot open file %s\n",argv[1]);

 return(0);}

 /*------------------------- read all the frames --------*/

 while((frame = FrameRead(iFile)) != NULL)

 {FrameDump(frame, stdout, 2);

 FrameFree(frame);}

 /*------------------------- close files ----------------*/

 FrFileIEnd(iFile);

 return(0);

}

A simple frame file copy: exampleCopyFile.c

This example all the frames from one file to a second file. The program arguments are the two file names:

/*---*/

/* File: exampleCopyFile.c by B. Mours (LAPP) Sep 14, 98*/

/* */

/* This program copy frames from one file to a second file */

/* the input file name is the first program argument */

/* the output file name is the second program arguement */

/*---*/

#include <stdio.h>

#include <stdlib.h>

#include "FrameL.h"

int main(int argc, char *argv[]) /*-------------- main ----*/

{struct FrFile *iFile, *oFile;

 struct FrameH *frame;

 long buffSize;

 char *buff;

 int level;

 if(argc != 4)

 {printf(" you need to provide two names: input and output file names"

 " and the compression level\n");

 return(0);}

 /*----- open the input file ---------------------------*/

 buffSize = 500000;

 buff = malloc(buffSize);

 iFile = FrFileINew(argv[1]);

 if(iFile == NULL)

 {printf("Error during file opening\n"

 " Last errors are:\n%s",FrErrorGetHistory());

 return(0);}

 /*------ open the output file --------------------------*/

 sscanf(argv[3],"%d",&level);

 oFile = FrFileONew(argv[2], level, buff, buffSize);

 if(oFile == NULL)

 {printf("Cannot open output file %s\n",argv[2]);

 return(0);}

 printf(" OK I will copy all frames from file %s to file %s level=%d\n",

 argv[1],argv[2],level);

 /*------------------------- read all the frames ------*/

 while((frame = FrameRead(iFile)) != NULL)

 {printf(" copy frame %d run:%d\n",frame->frame, frame->run);

 if(FrameWrite(frame, oFile) != FR_OK)

 {printf("Error during frame write\n"

 " Last errors are:\n%s",FrErrorGetHistory());

 return(0);}

 FrameFree(frame);}

 /*------------------------- close files --------------*/

 FrFileIEnd(iFile);

 FrFileOEnd(oFile);

 return(0);

}

1.13. A program to duplicate and modify Frames: exampleCopyFrame.c

This example read frames from one file, duplicate them and remove some of the ADC’s.

/*---*/

/* File: exampleCopyFrame.c by B. Mours (LAPP) Sep 14,98 */

/* */

/* This program read frames from one file, it copy them */

/* and then keep only 3 adc's. The selection is done in two */

/* differant ways for demo purpose. The input file (ran.dat)*/

/* is a file produce by the example exampleFull.c program. */

/* The result is written in a file name out.dat */

/*---*/

#include <stdio.h>

#include <stdlib.h>

#include "FrameL.h"

int main() /*------------------------ main ------------------*/

{struct FrFile *iFile, *oFile;

 struct FrameH *frame, *copy;

 long buffSize;

 char *buff;

 struct FrAdcData *adc;

 /*---------- open the input file --------------------------*/

 iFile = FrFileINew("ran.dat");

 if(iFile == NULL)

 {printf("Cannot open the input file\n");

 return(0);}

 /*----------- open the output file ------------------------*/

 buffSize = 500000;

 buff = malloc(buffSize);

 oFile = FrFileONew("out.dat", 3, buff, buffSize);

 if(oFile == NULL)

 {printf("Cannot open the output file\n");

 return(0);}

 /*---------------- read all the frames ----------------------*/

 while((frame = FrameRead(iFile)) != NULL)

 {printf(" copy frame %d run:%d\n",frame->frame, frame->run);

 /*--- we copy the frame to test the frame duplication--------*/

 copy = FrameCopy(frame);

 /*--- we just keep 2 adc channels in the new frame ----------*/

 FrameSelectAdc(copy,2,"Adc4","Adc5");

 /*--- we copy one more channelto the output frame ----------*/

 adc = FrAdcDataFind(frame,"Adc8");

 FrAdcDataCopy(adc,copy);

 FrameDump(copy,stdout,3);

 /*--- we write the stripped frame ---------------------------*/

 if(FrameWrite(copy, oFile) != FR_OK)

 {printf("Error during frame write\n"

 " Last errors are:\n%s",FrErrorGetHistory());

 return(0);}

 FrameFree(copy);

 FrameFree(frame);}

 /*------------------------- close files --------------------*/

 FrFileIEnd(iFile);

 FrFileOEnd(oFile);

 return(0);

}

1.14. A example of code using static data: exampleStat.c

In this example, we show how to add and use static data. This program set also the time variables.

/*---*/

/* File: exampleStat.c by B. Mours(LAPP) Sep 10, 99 */

/* */

/* This program produces frames with static data. */

/*---*/

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include "FrameL.h"

int main() /*-------------------- main-------------------*/

{struct FrFile *oFile;

 struct FrameH *frame;

 struct FrAdcData *adc1;

 struct FrVect *gData;

 struct FrStatData *gain;

 time_t utc;

 double sampleRate, phase;

 long nData,buffSize,i,j,k;

 unsigned int t0,dtS,dtN,sec;

 char *buff;

 /*------ initialisation --------------------------------*/

 if(FrLibIni(NULL, stdout, 1) == NULL)

 {printf("Error during initialisation\n"

 " Last errors are:\n%s",FrErrorGetHistory());

 return(0);}

 /*----- create one Frame header ------------------------*/

 frame = FrameHNew("Test data");

 if(frame == NULL)

 {printf("Error during frame creation\n"

 " Last errors are:\n%s",FrErrorGetHistory());

 return(0);}

 frame->ULeapS = FRGPSLEAPS;

 utc = time(NULL);

 frame->localTime = mktime(localtime(&utc)) - mktime(gmtime(&utc));

 frame->GTimeS = utc - FRGPSOFF + frame->ULeapS;

 FrHistoryAdd(frame,"created by a test program");

 /*------add detector information -----------------------*/

 frame->detectProc = FrDetectorNew("Test Interferometer");

 frame->detectProc->armLength = 6.;

 /*----- add 1 fast ADC with data provided by a

 random generator or a sine wave --*/

 sampleRate = 2.e+4;

 nData = 65536;

 frame->dt = nData/sampleRate;

 dtS = (unsigned int) (frame->dt);

 dtN = ((unsigned int) (1.e+9*frame->dt)) % 1000000000;

 adc1 = FrAdcDataNew(frame,"adc 1",sampleRate,nData,16);

 phase = 0.1532;

 /*------- add static data -----------------------------*/

 /*--(in this case the ADC gain for each channel)-------*/

 t0 = frame->GTimeS;

 gData = FrVectNew(FR_VECT_4R,1,nData,1.,"relatif_gain");

 gain = FrStatDataNew("gain","ADC 1 gain",t0,t0+20,0,gData);

 FrStatDataAdd(frame->detectProc, gain);

 for(i=0; i<5; i++)

 {gData->dataF[i] = 1.1;}

 /*----- open the output file in binary format --------*/

 buffSize = 500000;

 buff = malloc(buffSize);

 oFile = FrFileONew("ran.dat", 0, buff, buffSize);

 /*-------generate and output 10 frames --------------*/

 for(i=0; i<10; i++)

 {

 /*---- we first update the frame data -------------*/

 frame->frame++;

 frame->GTimeS += dtS;

 frame->GTimeN += dtN;

 sec = frame->GTimeN/1000000000;

 frame->GTimeS += sec;

 frame->GTimeN -= sec*1000000000;

 for(j=0; j < nData; j++)

 {phase = phase + 1.934e-3;

 adc1->data->dataS[j] = (short)(rand()+2000.*sin(phase));}

 /*---- we simulate de generation of new calibration data:

 we change the calibration constant every 10 seconds. --*/

 if(frame->GTimeS > gain->timeEnd)

 {gain->timeStart = gain->timeEnd;

 gain->timeEnd = gain->timeStart + 20;

 FrStatDataTouch(gain);

 for(k=0; k<nData; k++)

 {gData->dataF[k] += .0002;}}

 /*----- dump on stdout the current frame -----------*/

 FrameDump(frame, stdout,2);

 /*--- then we write the data on file ------------*/

 printf(" output frame %d\n",frame->frame);

 if(FrameWrite(frame, oFile) != FR_OK)

 {printf("Error during frame write\n"

 " Last errors are:\n%s",FrErrorGetHistory());

 return(0);}

 }

 /*----- close everything ----------------------------*/

 FrFileOEnd(oFile);

 FrameFree(frame);

 return(0);

}

1.15. A example to run an online frame builder: exampleOnline.c

This example builds frames with several ADC’s and stores them in the internal buffer of the computer. This test program is useful to measure on your computer the frame output speed for various compression scheme. This is also an example of an online frame builder.

/*---*/

/* File: exampleOnline.c by B.Mours (LAPP) Aug 23, 99 */

/* */

/* This program creates and write in memory several frames */

/* The compression level is the parameter. This program */

/* could be used to measure the frame output speed. */

/*---*/

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include "FrameL.h"

int main(int argc, char *argv[]) /*-------- main---------*/

{struct FrameH *frame;

 struct FrAdcData *adc;

 double sampleRate, rate;

 long nData,buffSize, nAdc, i, j, size, rawSize, t1, t0 ,compType;

 char *buff,name[100];

 if(argc > 1)

 {sscanf(argv[1],"%ld",&compType);}

 else {compType = 6;}

 printf(" Compression level: %ld\n",compType);

 FrLibSetLvl(0);

 /*----- create one Frame header ------------------------*/

 frame = FrameHNew("new");

 if(frame == NULL)

 {printf("Error during frame creation\n"

 " Last errors are:\n%s",FrErrorGetHistory());

 return(0);}

 /*-- add 40 fast ADC with random data of various rms ---*/

 nAdc = 40;

 nData = 65536;

 sampleRate = 1.e+4;

 for(i=0; i<nAdc; i++)

 {sprintf(name,"fastAdc%ld",i);

 adc = FrAdcDataNew(frame,name,sampleRate,nData,16);

 if(adc == NULL)

 {printf("Error during adc creation\n"

 " Last errors are:\n%s",FrErrorGetHistory());

 return(0);}

 for(j=0; j < nData; j++)

 {adc->data->dataS[j] = ((short)rand())/((i+1)*200.);}}

 FrameDump(frame,stdout,2);

 /*--reserve space for the output internal buffer ------*/

 buffSize = nAdc*nData*2 + 500000;

 buff = malloc(buffSize);

 /*-- output frame in the internal buffer whitout

 compression to get the full size ---------*/

 rawSize = FrameWriteToBuf(frame, 0, buff, buffSize);

 printf(" Raw frame size = %5f MBytes\n", rawSize/1024./1024.);

 /*---- output 100000 frames in the internal buffer (they are

 identical except for the frame number)---------------*/

 t0 = time(NULL);

 for(i=0; i<100000; i++)

 {frame->frame++;

 size = FrameWriteToBuf(frame, compType, buff, buffSize);

 if(i%5==0)

 {t1 = time(NULL);

 if(t1 != t0)

 {rate = 1.e-6*rawSize*(i+1)/(t1-t0);}

 else {rate = 0.;}

 printf(" frame %ld, frame size = %5f MBytes; rate = %f MBytes/s\n",

 i, size/1024./1024.,rate);}}

 return(0);

}

1.16. A special example to run an online frame builder: exampleOnlineUpd.c

This example builds frames with two ADC’s and stores them in the internal buffer of the computer. Then for each new frame the memory is directly updated without any new FrameWrite call. This is done using the FrFileOUpdate EX "FrFileOUpdate" call and the memcpy(adc1->inMemory,... calls.
Warning: this is unprotected code. You may easily overwrite the wrong memory location.

/*---*/

/* File: exampleOnlineUpd.c by B.Mours (LAPP) Sep 14,98 */

/* */

/* This program creates and write in memory several frames */

/* The frames are directly updated in memory. Warning: this */

/* should be used only by expert. */

/*---*/

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h>

#include "FrameL.h"

#define NDATA 1024

int main() /*-------------------- main------------------*/

{struct FrFile *oFile;

 struct FrameH *frame;

 struct FrAdcData *adc1,*adc2;

 double frequency,phase1,phase2;

 long nData,buffSize,j;

 char *buff,fileName[100];

 short dataS[NDATA];

 unsigned int gtimeS,gtimeN,fNum,sec;

 time_t localTime, UTC;

 int fd,frameSize;

 /*----- create one Frame header ------------------------*/

 frame = FrameHNew("new");

 frame->frame = 15;

 frame->run = 8;

 FrHistoryAdd(frame,"Online Frame Builder");

 /*-----reserve space for 2 ADC ---------------*/

 frequency = 1.e3;

 nData = NDATA;

 frame->dt = nData/frequency;

 adc1 = FrAdcDataNew(frame,"adc1",frequency,nData,16);

 adc2 = FrAdcDataNew(frame,"adc2",frequency,nData,16);

 if(adc2 == NULL)

 {printf("Error during adc creation\n"

 " Last errors are:\n%s",FrErrorGetHistory());

 return(0);}

 /*--reserve space for the output internal buffer ------*/

 buffSize = 4*nData + 500000;

 buff = malloc(buffSize);

 /*---- write the 'template' frame in the internal buffer----*/

 oFile = FrFileONew(NULL , 0, buff, buffSize);

 if(oFile == NULL)

 {printf("Error during output file creation\n"

 " Last errors are:\n%s",FrErrorGetHistory());

 return(0);}

 if(FrameWrite(frame, oFile) != FR_OK)

 {printf("Error during frame write\n"

 " Last errors are:\n%s",FrErrorGetHistory());

 return(0);}

 FrFileOEnd(oFile);

 frameSize = oFile->p - buff;

 printf(" The frame size is %d bytes\n", frameSize);

 /*---- now we start the loop on 10 frames ------------*/

 gtimeS = frame->GTimeS;

 gtimeN = 0.;

 phase1 = 0.;

 phase2 = 0.;

 for(fNum=0; fNum<10; fNum++)

 /*--- first update the frameH and the history info --*/

 {gtimeS += (unsigned int) (frame->dt);

 gtimeN += ((unsigned int) (1.e+9*frame->dt)) % 1000000000;

 sec = gtimeN/1000000000;

 gtimeS += sec;

 gtimeN -= sec*1000000000;

 FrFileOUpdate(oFile, fNum, frame->run, gtimeS, gtimeN);

 /*---- put in adc1 and adc2 sin waves ------------*/

 for(j=0; j < nData; j++)

 {phase1 += .0123;

 dataS[j] = (short)(1000.*cos(phase1));}

 memcpy(adc1->inMemory,dataS,nData*2);

 for(j=0; j < nData; j++)

 {phase2 += .00723;

 dataS[j] = (short)(1000.*cos(phase2));}

 memcpy(adc2->inMemory,dataS,nData*2);

 /*--- write frame on disk -------------------*/

 sprintf(fileName,"frame%d.dat",fNum);

 fd = open(fileName, O_CREAT|O_WRONLY,0644);

 write(fd, buff, frameSize);

 close(fd);}

 return(0);}
The Frame Utilities

Three small programs are included in Frame Package.

1.17. To copy a (set of) frame(s): FrCopy

This program copy frames from input files to one single output file, using or not data compression. Giving an input directory will write each input file of the directory in one single output file. Giving no output file will make FrCopy write in <inputName>.dat or <inputName>.copy depending on the input (directory or file). Frames written are by default compressed.

The syntax is: FrCopy -i <input file or directory>

 -r <begin run number> <end run number>

 -f <begin frame number> <end framenumber>

 -c <compression type>

 -l <level of dump>

 -debug <debug level>

 -h (to get help)

 -i : Argument can be an input file or an input directory where are

 the files to copy (compress) into a single output file.

 -o : The output file is located by default in the same directory

 as the input file or input directory.

 -r : Giving one run number is like giving twice the same

 Giving two run number will extract the runs in between.

 -f : Giving one frame number is like giving twice the same

 Giving two frame number will extract the frames in between.

 -c : Compression type is 0 (no compression), 1 (gzip compression)

 2 (differenciation) (does not compress) or 3 (differenciation+gzip)

 (default is 3). To decompress a file, copy it using 0.

 -l : Compression level is 0 (no compression), 1-9 (gzip level).

 In most of the case, default level=1 is enough.

1.18. To dump frames: FrDump

This program produces a dump of one file, one frame or one adc.

The syntax is: FrDump -i <input file or directory>

 -var <variable name or adc,sms,raw,proc,trig,sim,static>

 -r <begin run number> <end run number>

 -f <begin frame number> <end framenumber>

 -l <level of dump>

 -debug <debug level>

 -h (to get help)

 -i : Argument can be an input file or an input directory where are

 the files to copy (compress) into a single output file.

 -var : name of the variable to dump. If adc,sms,raw,proc,trig,sim or static

 then all the adc,sms,raw,proc or trig variables will be dumped.

 -r : Giving one run number is like giving twice the same

 Giving two run number will extract the runs in between.

 -f : Giving one frame number is like giving twice the same

 Giving two frame number will extract the frames in between.

 -l : the default level of 2 gives typically all the most relevant

1.19. To expand a file: FrExpand

This program gets frames from one single file and put them as one frame per file RUN#_FR# inside the output directory

The syntax is: FrExpand -i <input file>

 -o <output directory>

 -r <run number>

 -f <frame number>

 -R (if you want one Run per File)

 -debug <debug level>

 -h (to get help)

 -i : Input file containing frames

 -o : Output directory.

 It is located by default at the same level as the input file.

 -r : Giving one run number is like giving twice the same

 Giving two run numbers will expand only the runs in between.

 -f : Giving one frame number is like giving twice the same

 Giving two frame numbers will expand only the frames in between.

 -R : If you want one Run per File instead of one Frame per File

 (default = One Frame per File)

The Matlab interface

1.20. Introduction

Matlab is a popular numeric computation and visualization Software. Since the Frame library is a plain C software, the connection between frame files and Matlab is easy to set. In the FrameLib package there is a matlab directory which contains:

· a MEX-file: frextract.c

· one script to compile the MEX-file: mymex

· one M-file (example.m) to illustrate the use of the MEX-file.

The purpose of this interface is to provide a direct path to extract data from a frame. It is a simple example which could be easily customized by the user

1.21. Matlab interface setting installation

The first operation to set the MEX-file is to compile it. This is done using the script mymex or by typing the line:

mex frextract.c ../$UNAME/libFrame.a -I../src

where the environment variable $UNAME has to be replace by SunOS, OSF1, or your system name.

1.22. Using the MEX-file:

The frextract function could be called with the following arguments:

· Input arguments:

1) file name

2) ADC name

3) (optional) first frame (default = first frame in the file)

4) (optional) number of frame (default = 1 frames)

· Returned Matlab data:

5) ADC data (time series)

6) (optional) time values relative to the first data point

7) (optional) frequency values (for FFT's)

8) (optional) GPS starting time (in second.nanosec)

9) (optional) starting time as a string

10) (optional) ADC comment as a string

11) (optional) ADC unit as a string

12) (optional) additional information: it is a 9 words vector which content the variables: crate#, channel#, nBits, biais, slope, sampleRate, timeOffset(S.N), fShift, overRange. All these values are stored as double

The file example.m shows how to extract and to display the data from one ADC (named Adc5) from one file (ran.dat). This file is produced by the example: exampleFull.c. The frextract function could be called several times.

%---- define file name and channel name

%

 file = 'ran.dat';

 channel = 'Adc5';

%

% ---first extarct data from frames -------------

%

 [a,t,f,t0,t0s,c,u,more] = frextract(file,channel,2,2);

%

%---------- plot time serie --------------------

%

 subplot(2,1,1)

 plot(t,a)

 ylabel(channel)

 xlabel('time [s]')

 title(t0s)

%

%------ compute and plot FFT --------------------

%

 b = fft(a);

 m = abs(b(1:length(b)/2));

 subplot(2,1,2)

 semilogy(f,m)

 ylabel('power')

 xlabel('frequency [Hz]')

 title(['FFT for ',channel])

The example.m file

Do not forget also than you can run any Frame Utility program from Matlab by using the shell escape command ! For instance:

! FrDump ran.dat

will call the program FrDump with the argument ran.dat.

The FrameLib Installation

A compressed tar file is distributed from http://wwwlapp.in2p3.fr/virgo/FrameL.

To uncompress it you should type:

uncompress -v v3.75.tar.Z

tar xvf v3.75.tar

One script (makegcc) to build the library and the examples is available in the mgr directory. It is an example of how to compile the FrameLib and uses the GNU (gcc) compiler.

If you run on a non standard system, you may want to change the low level I/O function calls. By default the Unix function call are used. To used the standard C FILE you should compile the code using the option –DFRIOCFILE. To do more specific changes to the I/O you just need to change the FrIO.c file which group all those function call.

For any questions about this software, please contact Benoit Mours (mours@lapp.in2p3.fr) or Didier Verkindt (verkindt@lapp.in2p3.fr).

2. Computer requirement for The FrameLibrary

The Frame software requests that the computer is at least a 32 bits computer. The Frame software writes the data in their original size and format. When reading the data on a different hardware, the frame library performed the byte swapping if needed (‘big-endian’ versus ‘little-endian’). It also expends or truncates the INT_8 variables if one machine has only 32 bits integer. The floating point variables are assumed to be always in IEEE format. The frame software has been tested on the following platforms:

- Dec Alpha

- Sun Solaris

- HP-UX

- Power PC under LynxOS

It is ANSI-C code with POSIX compliance.

3. Library Changes

3.1. from Version 2.37 to Version 3.10

Several structures, structure’s element names and vector types have changed. The new names follow the new Specification document. Some function names have been changed according these new names. The function names changes are:

- FrSmsxxx -> FrSerXXX

- FrRecXXX->FrProcXXX

- FrameDumpBuf -> FrameDumpToBuf

In addition, the ASCII option for output file has been suppressed. The corresponding argument in the function FrOFileNew is now used for the frame data compression. Several static data with the same name but different time range can now be present in the same frame.

But files written with version 2.37 can be read by version 3.10.

3.2. from Version 3.10 to Version 3.20

Add vector compression and fix bugs in FrVectCopy. Old files (from 2.3x) could still be read with the version 3.20.

3.3. from Version 3.20 to Version 3.30

• Change Utime to Gtime according to the specification LIGO-T970130-05.

• Add the variable Uleaps in the FrameH structure.

• Add the handling of FrSummary and FrTrigData structures.

• Fix bugs when writting compressed frames.

3.4. from Version 3.30 to Version 3.40

• Add the variable detector in the FrStatData structure.

• Change one parameter in the FrStatDataAdd function call (replace root by detector).

• Compute the number of bytes for the EndOfFile structure.

• Fix bugs in GPS time versus UTC time.

• Fix bugs in Floating point conversion with compression.

• Put I/O call in a separate file (there is one more file to compile so check your script).

• Improve the utility programs.

All files written with version 2.37 and higher can be read by version 3.40.

3.5. from Version 3.40 to Version 3.42

• Fix bug in FrFileIClose: the Static Data structures were not free.

• Improve the logic for static data update(data with timeEnd = 0 where not properly handled).

All files written with version 2.37 and higher can be read by version 3.42.

3.6. from Version 3.42 to Version 3.50

• Support multiple input file in FrFileINew.

• Remove some warning when reading old files

• Suppress the need to call FrLibIni

• Add the functions: FrameCopy, FrameHCopy, FrAdcDataCopy, FrameSelectAdc.

• Add a Matlab section.

• Update the examples

All files written with version 2.37 and higher can be read by version 3.50.

3.7. from Version 3.50 to Version 3.60 (March 22, 1998)

• Add the functions: FrDataFind.

• fix the ADC sampleRate in exampleOnline.c and exampleMultiW.c

• update the FrCopy FrDump and Frexpand utilities.

• fix the bug in the directory creation in the makecc script.

• fix bug in FrReadVQ (wrong malloc size).

• Add in situs framewrite

All files written with version 2.37 and higher can be read by version 3.60.

3.8. from Version 3.60 to Version 3.70 (Sep 16, 1998)

• Add the functions:

FrameWriteToBuf
put a frame in one single buffer

FrameReadToBuf
read a frame from a buffer

FrLibVersion

return the FrameLib version number

• Fix bugs in

FrameCopy : (uninitialized variable which in some case return the previous frame)

FrAdcDataNew : the 'adc' with floating point values where not properly created

FrVectWrite: write next vector if available

FrFile->Header fix the size from 32 to 40

FrReadLong and FrReadVL : logic for bytes swapping in the Pentium case.

FrameRead : in the case of reading unknown record

GPS time convention and associated print statement

FrSENew : the number of structure element of the dictionary was sometime wrong.

One variable name (localTime) in FrameH dictionary.

• Suppress the additional arguments in the function FrFileINew (we still can use the old style)

• Add the possibility of input buffering. This code is not turned on since it does not bring improvements in the

 case of Linux or DEC Alpha. See the FrIO.c file for details.

• Add a protection in FrVectNew if the function is called with strange arguments

• Add includes (unistd.h) in FrIO.h

• Change YES and NO global variables by FR_YES and FR_NO (internal variables)

• Add a parameters in the example FrDumpFile

• Print dictionary warning only if debugLevel > 1.

• Specify O_BINARY type for file open (needed for Windows NT)

• FrVectCompress: put a protection on gzipLevel (if set to 0 on Sun, the program crashed).

• Fix the format of a few print statements

• Update all the examples to use the latest functions and remove some unused variables

All files written with version 2.37 and higher can be read by version 3.70.

3.9. from Version 3.70 to Version 3.71 (October 6, 1998)

• Code cleaning in the FrCopy and FrDump utilities.

• Fix a bug in FrAdcDataNew when creating ADC’s with floating point values.

• Add a protection for bad arguments in FrAdcDataFind and FrSerDataFind in

All files written with version 2.37 and higher can be read by version 3.71.

3.10. from Version 3.71 to Version 3.72 (October 9, 1998)

• Use 315964811 to convert UTC to GPS time for old files instead of 315964810.

All files written with version 2.37 and higher can be read by version 3.72.

3.11. from Version 3.72 to Version 3.73 (November 11, 1998)

· FrVectCompress; add new compression scheme (zeros suppress for short) and try to optimize the code

· Add FrVectZComp and FrVectZExpand

· FrVectDiff: return the differentiate result (the original input is now unchanged)

· FrVectExpand: cleanup the logic

· FrVectWrite: To not copy the vector before compressing it

· FrVectDump: printf update

All files written with version 2.37 and higher can be read by version 3.73.

3.12. from Version 3.73 to Version 3.74 (April 2, 1999)

· FrAdcDataNew: Put adc name in the vector

· FrameDumpToBuf: Protect the case when the tempory file open failed.

· FrameWriteToBuf fix a bug to get the size including the EndOfFile record

· FrDicFree: Reset the file->SH pointer in order to be able to call directly FrDicFree

· FrFileINew and FrFileONew: Add protection for missing file name

· FrSimDataNew: Put data name in the vector and allow more type of storage

· FrSerDataGet fix bug to avoid name confusion with longer name

· FrProcDataNew: Change calling sequence to be compatible with Adc and Sim data.

· In FrVectCompress: compress only if stay in initial size and return the compress vector, the original is unchanged

· FrVectExpand: Trap error for unknown compression flag

· FrVectNew: do not fill the vector name

· FrVectNewTS: New function

· FrVectNew1D: New function

· FrVectWrite: do not compresss if compress flag = -1

· FrIO.h: remove include to unistd.h

· exampleDumpFile.c: Add protection for missing file name

· frextarct.c: fix memory leaks, api description and printf statement for GPS starting time.

· Update the utilities FrDUmp.c FrCopy.c and FrExpand.c

· Clean up the FrameL.h to be compatible with ROOT/Vega

· Script: use only gcc and add the option -fPIC

All files written with version 2.37 and higher can be read by version 3.74.

3.13. from Version 3.73 to Version 3.75 (April 29, 1999)

· FrFileONew: restore the possibility to have fileName == NULL

· FrDicDump: fix a bug in the loop (this function is used only for debug)

All files written with version 2.37 and higher can be read by version 3.75.

3.14. from Version 3.75 to Version 3.80 (May 17, 1999)

· Change the FrIO.c code to support the standard C FILE.

· Add random frame access. This is an option which is under evaluation.

All files written with version 2.37 and higher can be read by version 3.80.

3.15. from Version 3.80 to Version 3.81 (June 4, 1999)

· Fix a bug in random frame access for multiple file open and close

· FrFileINew and FrFileONew: Removed protection for missing file name (added in 3.74)

All files written with version 2.37 and higher can be read by version 3.81.

3.16. from Version 3.81 to Version 3.82 (June 9, 1999)

· Add FrFileMarkFree to fix a memory leak when using the file marks.

All files written with version 2.37 and higher can be read by version 3.82.

3.17. from Version 3.82 to Version 3.83 (June 15, 1999)

· Move the FrIO structure definition from FrIO.c to FrIO.h.

All files written with version 2.37 and higher can be read by version 3.83.

3.18. from Version 3.83 to Version 3.84 (August 23, 1999)

· FrVectWrite: Fix Memory leak when using compress.

· FrVectZComp: Add protection for buffer overflow

All files written with version 2.37 and higher can be read by version 3r84.

3.19. from Version 3.84 to Version 3.85 (September 11, 1999)

· FrTrigDataWrite and FrSummaryWrite: Fix bug to write link list

· struct FrVect: Add tempory variables (startX, frame, …)

· Add define for GPS data and fix bug in time setting in the examples

All files written with version 2.37 and higher can be read by version 3r85.

Index of Functions

FrAdcDataCopy,7

FrAdcDataFind,7

FrAdcDataFree,7

FrAdcDataNew,6

FrameCopy,6

FrameDump,6

FrameDumpToBuf,6

FrameFree,5

FrameHCopy,6

FrameHNew,5

FrameRead,10

FrameReadFromBuf,11

FrameSelectAdc,7

FrameWrite,9

FrameWriteToBuf,10

FrErrorSetHandler,12

FrFileIEnd(,11

FrFileINewFd,10

FrFileIRewind,11

FrFileOEnd,10

FrFileONew,9

FrFileONewFd,9

FrFileOSetGzipLevel,9

FrFileOUpdate,19

FrHistoryAdd,8

FrLibIni,3

FrLibSetLvl,3

FrLibVersion,3

FrMsgAdd(,8

FrProcDataFind(,8

FrProcDataNew,8

FrSerDataFind,8

FrSerDataNew,8

FrSimDataFind,8

FrSimDataNew,8

FrStatDataAdd,11

FrStatDataFind,12

FrStatDataNew,11

FrStatDataRemove,12

FrStatDataTouch,12

FrStrCpy,7

FrSummaryFind,8

FrSummaryNew,8

FrTrigDataFind,8

FrTrigDataNew,8

FrVectCompress,5

FrVectCopy,5

FrVectDump,5

FrVectExpand,5, 11

FrVectFree,4

FrVectNew,3, 4

FrVectNew1D,4

TABLE OF CONTENT

11.
Introduction

2.
The C structures used by The FrameLibrary
2
3.
Library usage
3
3.1.
Library initialization:
3
3.2.
Vectors manipulation
3
3.3.
Frame creation
5
3.4.
ADC’s data manipulation
6
3.5.
Adding more data to a Frame
8
3.6.
Writting Frames on File or Internal Buffer
9
3.7.
Reading Frames from File or Internal Buffer
10
3.8.
Frame and ADC Random access
11
3.9.
Manipulate Static data
12
3.10.
Frame Library Error Handling
13
4.
Examples
14
4.1.
A complex frame: exampleFull.c
14
4.2.
A program to dump the frame: exampleDumpFile.c
16
4.3.
A simple frame file copy: exampleCopyFile.c
17
4.4.
A program to duplicate and modify Frames: exampleCopyFrame.c
18
4.5.
A example of code using static data: exampleStat.c
19
4.6.
A example to run an online frame builder: exampleOnline.c
20
4.7.
A special example to run an online frame builder: exampleOnlineUpd.c
21
5.
The Frame Utilities
23
5.1.
To copy a (set of) frame(s): FrCopy
23
5.2.
To dump frames: FrDump
23
5.3.
To expand a file: FrExpand
24
6.
The Matlab interface
25
6.1.
Introduction
25
6.2.
Matlab interface setting installation
25
6.3.
Using the MEX-file:
25
7.
The FrameLib Installation
27
8.
Computer requirement for The FrameLibrary
27
9.
Library Changes
27
9.1.
from Version 2.37 to Version 3.10
27
9.2.
from Version 3.10 to Version 3.20
27
9.3.
from Version 3.20 to Version 3.30
28
9.4.
from Version 3.30 to Version 3.40
28
9.5.
from Version 3.40 to Version 3.42
28
9.6.
from Version 3.42 to Version 3.50
28
9.7.
from Version 3.50 to Version 3.60 (March 22, 1998)
28
9.8.
from Version 3.60 to Version 3.70 (Sep 16, 1998)
28
9.9.
from Version 3.70 to Version 3.71 (October 6, 1998)
29
9.10.
from Version 3.71 to Version 3.72 (October 9, 1998)
29
9.11.
from Version 3.72 to Version 3.73 (November 11, 1998)
29
9.12.
from Version 3.73 to Version 3.74 (April 2, 1999)
29
9.13.
from Version 3.73 to Version 3.75 (April 29, 1999)
30
9.14.
from Version 3.75 to Version 3.80 (May 17, 1999)
30
9.15.
from Version 3.80 to Version 3.81 (June 4, 1999)
30
9.16.
from Version 3.81 to Version 3.82 (June 9, 1999)
30
9.17.
from Version 3.82 to Version 3.83 (June 15, 1999)
30
9.18.
from Version 3.83 to Version 3.84 (August 23, 1999)
30
9.19.
from Version 3.84 to Version 3.85 (September 11, 1999)
31
Index of Functions
32
10.
TABLE OF CONTENT
33

� Specification of a common Data Frame Format for Interferometric Gravitational Wave Detectors (IGWD) LIGO-T970130-B and VIRGO-SPE-LAP-5400-120;2

Frame Library User’s Manual
34/34
Version 3.85

