

Frame Library (Fr)
User's Manual

VIR-MAN-LAP-5400-103
Version 6.15

September 10, 2004

Summary:

Introduction
A quick tour of the Library: The examples
The Frame Utilities: FrCopy, FrDump and FrCheck
Reference Part

Library control FrAdcData FrSimData
Frame Handling FrDetector FrSimEvent
Input File: FrFileI FrEvent FrStatData
Output File: FrFileO FrHistory FrSummary
File checksum FrMsg FrTable
Error Handling FrProcData FrVect

FrSerData FrFilter

The Matlab interface
The ROOT interface
The Octave interface
The Frame Library Installation
Library Changes

Introduction

A frame is a unit of information containing all the information necessary for the understanding of the interferometer
behavior over a finite time interval which integrates several samplings. It contains thus not only the sampling
performed during the integrated time interval, but also those performed at a frequency smaller than the frame
frequency.

To simplify its manipulation, a frame is organized as a set of C structures described by a header holding pointers to
additional structures and values of parameters expected to be stable over the integrated time interval: the starting
time of the frame, its duration, values produced by the slow monitoring. This header is followed by an arbitrary
number of additional structures, each holding the values of a rapidly varying parameter like the main signal, the
seismic noise, etc...

This frame structure is a standard which has to be conserved over the various stages of the analysis. Thus Frame
history, detector geometry, trigger results, monitoring data, reconstructed data, simulation results just lead to
additional structures. It is always possible to add new structures or to drop old ones.

This standard format is the one used by the LIGO and VIRGO Gravitational Wave Detectors. This Document
described the software used to manipulate the frames. The definition of the various structures as well as their
representation on tape is described in specification document.

1 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

The C structures used by The Frame Library

The data are stored in a set of C structures described in the document Specification of a Common Data Frame
Format for Interferometric Gravitational Wave Detector (IGWD) (VIR-SPE-LAP-5400-102 and
LIGO-T970130-E). The variable names of the C structures are exactly the one given in this document.

A quick tour of the Library: the examples

Many examples are provided with the frame library in the directory src. They have been designed to test the various parts
of the library and are good starting points for a new program. The Files are:

exampleCompress.c This program create a frame with all types of vectors, write it with all the compression types
available and read it back to check if the frame has not been corrupted.
exampleCopyFile.c a simple copy file program. See the utility FrCopy for more complex file copy.
exampleCopyFrame.c a simple copy file program with some channel selection. See the utility FrCopy for more
complex file copy.
exampleFileDump.c dump on the screen a short summary of a frame file content See the FrDump utility for more
options.
exampleFull.c This example builds frames with several ADC and many different types of data. Then the frames are
written in a file. Finally the tag functionality is tested.
exampleMark.c This function shows the use of random access in a frame file.
exampleMultiR.c Reads the various files produced by exampleMultiW.c This program is useful to search for
memory leaks.
exampleMultiTOC.c Reads the various files produced by exampleMultiW.c using random access. This program is
used to test random access and to search for memory leaks.
exampleMultiW.c Produces several frames in different files. This program is useful to search for memory leaks.
exampleOnline.c creates a few frames and write them in memory. Different compression type could be used to test
the speed.
exampleReshape.c This program shows how to change the frame length using the FrReshape functions..
exampleSpeed.c This program test the in memory read/writing speed for a frame given by the user and the a given
compress type.
exampleStat.c Illustrates the use of static data.

The Frame Utilities: FrCopy, FrDump and FrCheck

Three utilities are included in the Frame Package.

To copy a (set of) frame(s): FrCopy

This program reads frames from one or more input files, merge them if requested and write them to one or more
output file, using or not data compression. See the help function bellow for program use.
The syntax is: FrCopy options
where option could be:

-i <input file(s)> If more than one files is given after the keyword -i they will be read in sequence. If several
input stream are defined (several -i followed by name(s)), then the frame content will be merged
-o <output file>
-f <first frame: (run # frame #) or (GPS time)> Example: -f 0 20 will start with run 0 frame 20. -f 6544444
will start at GPS time = 6544444. If this option is used, the Table Of Content is mandatory and all frames will
be read by increasing time.
-l <last frame: (run # frame #) or (GPS time)>
-c <compression type> Compression types are -1 (same compression as input file), 0 (no compression), 1
(gzip), 3 (differenciation+gzip), 5 (gzip for float+zero suppress for int), 6 (zero suppress for int). The default
is 6.
 -a <list of input adc channels>.When this option is used, random access are performed to read only the

2 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

requested adc channels. Only the Frame header is returned in addition to the adc data. Additional information
like the history records is not returned.
-t <list of tag channels> Tag is a channel list with wild cards like: ADC122 ADC5* If a name start by - it is
interpreted as an anti-tag
-r <new frame length in second> The reshape option works only with one output file. It assumes that the
length of the input frame is a integer number of second. The starting GPS time of the output frame will be a
multiple of the frame length. The requested length should be larger than the input frame length.
-decimate <number of sample to average> The decimation is done on all selected channel by doing a simple
data averaging.
-d <debug level> (from 0 to 5)
 -max <maximum output file length in second>. If this option is used, the output file is split in several file,
each of them lasting up to <max> second. The name of these files is no more just <output file> but '<output
file>-GPS-maxLength.gwf' (like V-R-730123000-100.gwf if <output file> = 'V-R').
-noTOCts to not write TOC for time series
-noChkSum to not put checksum in the output file.
-h (to get the help)

To dump frames: FrDump

This program produces a dump of one file, one or more frame or one or more channels.
The syntax is: FrDump options
where option could be:

-i <input file(s)> If more than one files is given after the keyword -i they will be read in sequence. If several
input stream are defined (several -i followed by name(s)), then the frame content will be merged
-f <first frame: (run # frame #) or (GPS time)> Example: -f 0 20 will start with run 0 frame 20. -f 6544444
will start at GPS time = 6544444
-l <last frame: (run # frame #) or (GPS time)>
-t <list of tag channels> Tag is a channel list with wild cards like: ADC122 ADC5* If a name start by - it is
interpreted as an anti-tag
-d <debug level> (from 0 to 5)
-h (to get this help)
If one of the next option is there, we do only a partial frame dump

-adc to dump only the FrAdcData information
-sms to dump only the FrSerData information
-proc to dump only the FrProcData information
-sim to dump only the FrSimData information
-sum to dump only the FrSummary information
 -stat to dump only the static information
-raw to dump only the raw data information
-event to dump only the FrEvent and FrSimEvent

To check a frame file: FrCheck

This program check that the frame file could be read successfully. The file checksum are also checked if they are
available. In case of success, this program returns zero and set the environment variable FRCHECK_NFRAME to
the number of frames in the file. It returns ae error flag in case of error.By default (unless the -t or -s option are
used), FrCheck do first a sequentiel read to check the file checksum, then do a random access read to check the
frame checksum.
The syntax is: FrCheck options
where option could be:

-i <input file> Only one file should be used
-d <debug level> (default 1). 0 will supress all info and error messages.
-t to scan the file using only the TOC
-s to scan the file using only sequentiel read(TOC not used)
-f GPS time of the first frame to scan (default=0) (only used when doing the random access)
-l GPS time of the last frame to scan (default : 999999999.) (only used when doing the random access).
-c to check the data compression (if any)

3 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

-h to get the help

Reference Part

Library control FrAdcData FrSimEvent
Frame Handling FrDetector FrStatData
Input File: FrFileI FrHistory FrSummary
Output File: FrFileO FrMsg FrTable
File checksum FrProcData FrEvent
Error Handling FrSerData FrVect

FrSimData

Library control

The Frame library do not need any initialization. However, you can change some of the default parameters using the
following function or you can access to some information.

FrLibIni

This function changes the debug level and output file.
Syntax: FILE *FrLibIni(char *outFile, FILE *fOut, int dbglvl)

outFile is the output file name provided by the user
fOut should be used only if the user wants to send out the debug information on an already opened file. Then
he should provide this pointer. In this case, outFile should be NULL.
dbglvl is the debug level provided by the user. This is used only for internal and technical debug. Usually you
can use 0.

0 means no output at all
1 gives a minimal description
2,3 give more information

The return argument is the pointer to the file opened. If the output file could not be opened the debug information is
sent on stdout and the return argument is stdout. In case of severe error due to insufficient space, the return value is
NULL and the user should not go further.

FrLibSetLvl

This function changes the debug level. It could be called at any time.
Syntax: void FrLibSetLvl (int dbglvl); where: dbglvl is the debug level provided by the user with the same
meaning as in FrLibIni.

FrLibVersion

This function returns the Library version as a float.
Syntax: float FrLibVersion (FILE *fOut); It returns the version number (like 3.70). If fOut is not NULL it
print also on fOut some debugging information.

FrLibVersionF

This function returns the full Library version and compile time as a char*.
Syntax: char *FrLibVersionF (); It returns the version number like "Fr Version:6.07 (May 20, 03)(Compiled:

4 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

May 20 2003 17:45:54)".

Frame Handling

FrameCompress, FrameMerge FrameReshape
FrameCopy, FrameRead, FrameTagXXX,
FrameDump, FrameReadN, FrameUntagXXX,
FrameDumpToBuf FrameReadRecycle FrameWrite
FrameExpand, FrameReadT FrameWriteToBuf
FrameFree, FrameReadTAdc, FrameRemoveUntaggedData
FrameFindVect FrameReadFromBuf Back to summary

FrameCompress

This function compress in memory all the frame vectors.
Syntax: FrameCompress (FrameH *frame, int compress, int gzipLvl) were:

frame is the pointer to the frame header provided by the user
compress is the type of compression:

1 for gzip,
3 for differentiation and gzip.
5 for differentiation and zeros suppress (only for short)
6 for differentiation and zeros suppress for short and int, gzip for other
7 for differentiation and zeros suppress for short, int and float to integer (not part of the current frame
format)
8 for differentiation and zeros suppress for short, int and float. (not part of the current frame format)
255 for user defined compression code (definitely not part of the frame format)

gzipLvl is the gzip compression level (provided by the user). 0 is the recommended value.
In normal use, the compression is done at frame write and the user do not need to take care of it.

FrameCopy

This function copy a full frame and return the pointer to the new FrameH structure. This means it allocate the
memory for the full tree of structures. The input frame is unchanged. It returns NULL in case of error (memory
allocation failed).
Syntax: FrameH* FrameCopy (FrameH *frame) were frame is the pointer to the frame header provided by the
user

FrameDump

This function produce a readable dump of the frame content.
Syntax: void FrameDump (FrameH *frame, FILE *fp, int debugLevel) were:

frame is the pointer to the frame header provided by the user
fp is the file pointer where the debug information will be send (like stdout)
debugLevel is the debug level provided by the user. 0 means no output at all, 1 gives a minimal description
(<5 lines per frame), 2, 3 give more information

FrameDumpToBuf

This function produce a readable dump of the frame content.

5 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

Syntax: char* FrameDumpToBuf (FrameH *frame, int level, cha* buf, long bufsize) were:
frame is the pointer to the frame header provided by the user
debugLevel is the debug level provided by the user. 0 means no output at all, 1 gives a minimal description
(<5 lines per frame), 2, 3 give more information
buf is a buffer provided by the user
bufSize is the buffer size in bytes (provided by the user).

This function returns the pointer to the beginning of the printable area of buf.

FrameExpand

This function uncompressed all the frame vectors:
Syntax: void FrameExpand (FrameH* frame) where frame is the pointer to the frame header provided by the user
In normal use the uncompression is done by a FrameRead call or by the channel access.

FrameFree

This function all the space allocated for a frame.
Syntax: void FrameFree (FrameH* frame) where frame is the pointer to the frame header provided by the user

FrameGetAdcSize

This function returns the memory used by a all the ADC structures and associated vectors (in bytes)
Syntax: FRLONG FrameGetAdcSize (FrameH *frame)

FrameFindXXX

Syntax:
FrDetector *FrameFindDetector(FrameH *frame, char *detNameOrPrefix)
This function returns the pointer to the detector structure given its name or 2 letters prefix. It return NULL if the
detector is not found.Since the detector is still attached to the frame, the user should NOT free it.

FrameFindXXX

Syntax:
FrVect* FrameFindVect (FrameH* frame, char* name)
FrVect* FrameFindAdcVect (FrameH* frame, char* name)
FrVect* FrameFindProcVect (FrameH* frame, char* name)
FrVect* FrameFindSimVect (FrameH* frame, char* name)
FrVect* FrameFindStatVect (FrameH* frame, char* name)
FrVect* FrameFindSumVect (FrameH* frame, char* name)
These functions returns the pointer to the vector associated to one channel (Adc, Proc or FrSimData).
FrameFindVect look for all kinds of channels. Name is the channel name. It return NULL if the channel is not
found.Since the vector is still attached to the frame, the user should NOT free the vector.

FrameMerge

This function merges the data of two frames.
Syntax: FrameH* FrameMerge (FrameH* frame1, FrameH* frame2) where frame1 and frame2 are the pointers
to the frame headers provided by the user. Data from frame2 are added to frame1. All remaining unused structures
of frame2 are deleted.
No check is performed on the time compatibility. If the timing information is available (GTimeS != 0) then the two
times are compared and the possible time residual is stored in the adc->timeOffset variables.

FrameNew

6 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

This function create a new frame: the frame header and the FrDetectProc structure. The local time is used to fill the
Frame header timing section. A detector (Proc) structure is also added in order to be able to add right away the
static data structure.
Syntax: FrameH* FrameNew (char *name) where name is the experiment name.
This function returns the pointer to the frame header or null in case of problem.
Remark: the FrameHNew function (syntax: FrameH* FrameHNew (char *name)) creates only a frame header and
do not fill the timing information.

FrameRead

This function read the next frame in a file. It returns NULL in case of error or end of file.
Syntax: FrameH* FrameRead (FrFile *iFile) where iFile is the pointers to the input file provided by the user.
If you want to not uncompress the data at read time see FrFileSet.

FrameReadN

This function read the frame starting for a given run and frame numbers. This is a random file access and requires
frame files version 4 at least. It returns NULL in case of error or if the frame is not in the file or if the table of
content is not available.
Syntax: FrameH* FrameReadT (FrFile *iFile, int runNumber, int frameNumber) where iFile is the pointers to
the input file provided by the user.

FrameReadRecycle

This function read the next frame in a file. It returns NULL in case of error or end of file. If free the space for the
previous frame and recycle it's static data. This function speeds up the read of files with lot of static data.
Syntax: FrameH* FrameReadRecycle (FrFile *iFile, FrameH *frame) where iFile is the pointers to the input
file provided by the user and frame a pointer to the frame to recycle or NULL.

FrameReadT

This function read the frame starting at a given time. This is a random file access and requires frame files version 4
at least. It returns NULL in case of error or if the frame is not in the file or if the table of content is not available.
Syntax: FrameH* FrameReadT (FrFile *iFile, double gtime) where iFile is the pointers to the input file provided
by the user and gtime the request GPS time. The selected frame is the one which start at gtime or which include
gtime. If gtime = 0 then the first frame in the file is returned.

FrameReadTAdc, FrameReadTProc, FrameReadTSer, FrameReadTSim

This function read the frame starting at a given time with only a defined list of Adc, or Proc or Ser or Sim channels.
This is a random file access and requires frame files version 4 at least. It returns NULL in case of error or if the
frame is not in the file or if the table of content is not available.
Syntax:
FrameH* FrameReadTAdc (FrFile *iFile, double gtime, char *name)
FrameH* FrameReadTProc (FrFile *iFile, double gtime, char *name)
FrameH* FrameReadTSer (FrFile *iFile, double gtime, char *name)
FrameH* FrameReadTSim (FrFile *iFile, double gtime, char *name)
where

iFile is the pointers to the input file provided by the user and gtime the request GPS time (several files could
be used at the same time).
The selected frame is the one which start at gtime or which include gtime. If gtime = 0 then the first frame in
the file is returned.
The selected frame is the one which start at gtime or which include gtime. If gtime = 0 then the first frame in
the file is returned.

7 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

name is a string containing a list of channel names of different type separated by a space which could include
wild card (example "*LSC* *EXC")

FrameReadFromBuf

Syntax: FrameH *FrameReadFromBuf (char *buf, long nBytes, unsigned short comp); where comp is the
compression level. if comp = -1, no compression/uncompress is performed.

FrameReshapeNew, Add, End

This set of function is designed to change the frame size, i.e. to group consecutive frame in a single one.
Three calls are needed:

 FrameH *FrameReshapeNew (FrameH *frame, int nFrame, int position); This function initialize the
reshaping. The new frame size will be nFrame longer than the original frame size. The new frame will start at
time offset equal to "position" times the length of the initial frame. This function returns a pointer to the new
frame (same has the input frame) or NULL in case of problem.
int FrameReshapeAdd (FrameH *new, FrameH *frame); This function move the information from the
frame "frame" to the frame "new" which should be the output of the function FrameReshapeNew. This
function perform a FrameFree of the frame part. It returns 0 in case of success or an error code.
int FrameReshapeEnd (FrameH *new); This function should be call when all the frame part have been
added and before the "new" frame could be used. This function returns 0 in case of success or an error code.

Remark: The copy utility is a convenient way to change the frame size.
Example: See the file exampleReshape.c

FrameTagXXX with XXX=Adc, Ser, Sim, Stat, Sum, Proc, Trig

Syntax:

void FrameTag (FrameH *frame, char *tag);
void FrameTagAdc (FrameH *frame, char *tag);
void FrameTagProc (FrameH *frame, char *tag);
void FrameTagSer (FrameH *frame, char *tag);
void FrameTagSim (FrameH *frame, char *tag);
void FrameTagStat (FrameH *frame, char *tag);
void FrameTagSum (FrameH *frame, char *tag);
void FrameTagTrig (FrameH *frame, char *tag);

These function select all the Adc, Ser, ... which match the names given in the tag string. This string could contain
several names, some of them could include "*" and then are interpreted has wild card. After a call to
FrameTagXXX all other channels are hidden for the user. If a FrameDump or FrameWrite is performed, only the
tagged channels will be dumped or written. For instance the call to:

void FrameTagAdc(myframe, "Lr* SaDb2")

will keep from the frame myframe the SaDb2 ADC and all ADC with a name starting with Lr.
The function FrameTag call all the other function. It performed a 'global tag'
Remarks:

No change of the channel list should be done when the list as been tagged.
Wild card "*" could be used anywhere in a name.
The tag "*" means select all the channels.
The tag "NONE" means no channels are selected.
A tag starting by "-" is interpreted as an 'anti-tag': the channel is removed.
It is not necessary to call FrameUntag before doing a FrameFree.

8 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

FrameUntagXXX with XXX=Adc, Ser, Sim, Stat, Sum, Proc, Trig

Syntax:
void FrameUntag (FrameH *frame);
void FrameUntagAdc (FrameH *frame);
void FrameUntagProc (FrameH *frame);
void FrameUntagSer (FrameH *frame);
void FrameUntagSim (FrameH *frame);
void FrameUntagStat (FrameH *frame);
void FrameUntagSum (FrameH *frame);
void FrameUntagTrig (FrameH *frame);
These functions restore the channel linked lists.
The function FrameUntag call all the other function. It performed a 'global tag'

FrameRemoveUntaggedData

Syntax:
void FrameRemoveUntaggedData (FrameH *frame);
This function remove (free) all the channels which are not tagged. After a call to this function, the FrameUntag
function will have no effect;

FrameWrite

Syntax: int FrameWrite (FrameH *frame, FrFile *oFile);
where:

frame is the pointer to the frame Header to be written
oFile is the pointer to the output file.

This functions returns 0 in case of success or an error code in case of failure.

FrameWriteToBuf

Syntax: long FrameWriteToBuf (FrameH *frame, unsigned short comp, char *buf, long nBytes);
where:

frame is the pointer to the frame Header to be written
comp gives the compression algorithm used at writing time (see FrFileONew).
buf is the buffer which will receive the frame
nBytes is the buffer size

This functions returns the number of bytes written or 0 in case of error.

FrAdcData: ADC's data manipulation

FrAdcDataDecimate

This function reduce the sampling frequency of and ADC by averaging nGroup bins together (in this version, no
filter is performed). It increase the number of bits of the appropriate number of nGroup is positive or keep the
original number of bits of nGroup is negative. This version works only for short, int, float and double.
Syntax: int FrAdcDataDecimate (FrAdcData *adc, int nGroup)
This functions returns 0 in case of success and a non zero value in case of error.

FrAdcDataDump

This function produce a formatted dump of the Adc data. The recommended debug level is 2 (with 0 no output is
produced).

9 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

Syntax: void FrAdcDataDump (FrAdcData *adc, FILE *fp, int debugLvl) were:
adc is the pointer to the FrAdcData structure provided by the user
fp is the file pointer where the debug information will be send (like stdout)
debugLevel is the debug level provided by the user. 0 means no output at all, 2 gives about 5 lines of
information.

Remark: The DataValid flag is printed according the Virgo use. DataValid = 0 means no problem. The six lower
bits are used to describe the following problems:
 1 means non-valid floating point (only used for floating point)
 2 means some data are missing at known position in the vector (see adc->next vector)
 3 means some data are missing at unknown position in the vector
 4 means front end error: hardware parity error (DOL error)
 5 means front end error: too slow DAQ (FIFO full for instance)
 6 means front end error: invalid format
For example dataValid = 0x14 means FIFO full and missing data at unknown position.

FrAdcDataFind

This function find an FrAdcData structure in a frame. It returns the pointer to the FrAdcData or null if the structure
does not exist.
Syntax: FrAdcData* FrAdcDataFind (FrameH* frame, char* name)

FrAdcDataFree

This function free all the space allocated for the FrAdcDat structure and the linked structure. This function should
be used only if the FrAdcData has been created outside a frame like when using random access (FrAdcDataReadT).
Syntax: FrAdcData *FrAdcDataFree (FrAdcData *adc);

FrAdcDataGetSize

This function returns the memory used by an ADC structure and the associated vector (in bytes)
Syntax: FRLONG FrAdcDataGetSize (FrVect *vect)

FrAdcDataNew and FrAdcDataNewF

These functions allocates the space for the data of an ADC, and attach it to the FrameH structure (including the
creation of the FrRawData structure if does not yet exist). They just differ by the number of parameters :
FrAdcDataNewF perform a full fill of the FrAdcData structure.
Syntax:

FrAdcData *FrAdcDataNewF (FrameH *frame, char *name, char *comment, unsigned int
channelGroup, unsigned int channelNumber, int nBits, float bias, float slope, char *units, double
sampleRate, int nData);
FrAdcData* FrAdcDataNew (FrameH* frame, char* name, double sampleRate, int nData, int nBits)

The parameters (provided by the user) are:
frame (FrameH*) is the pointer to the root frameH structure. frame = NULL is a valid option (the FrAdcData
is created independently of a frame)
name (cha*) is the ADC name. This name should be unique within a frame for all ADC structures.
comment (char *) is any comment the users need to add to the adc description (could be NULL).
channelGroup (int) is the channel group (usually a ,mix of crate number, slot number)
channelNumber (int)
nBits (int) is the number of bits used to store the information. The word length will be either 1, 2, 4 (or 8)
bytes. A negative values means that we store floating point number (nBits = 12 is store as a short, nBits =-32
is stored in a 4 bytes float).
bias. (float) Any known pedestal
slope (float). The calibration constant.
units (char) The calibration unit

10 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

sampleRate (double) is the sampling frequency in Hz.
nData (int) is the number of data for this ADC within a frame

In case of problem, the function returns NULL.
Remark: this function only allocate the space. The user has to fill the adc data vector. For example to fill the vector
with values coded on 2 bytes:

for(i=0; i<adc->data->nData; i++)
 {adc->data->dataS[i] = (the adc value);}

FrAdcDataReadT

Syntax: FrAdcData *FrAdcDataReadT (FrFile *iFile, char *name, double gtime);
This function perform a random read access on the file *iFile for a given GPS time (gtime). I gtime = 0 then the
data for the first frame in the file is returned. Only the data for the given Adc are read. Several adc name could be
requested in name (name should be separate using space). Names could also include wild card. The function return
a pointer to the FrAdcData structure or NULL in case of error (frame not in file, not Table Of Content, malloc
failed). It returns also the associated vector but not the associated table.
After using FrAdcDataRead, the user should free the memory by calling FrAdcDataFree since the FrAdcData
structure has been directly extract from a file whitout frame to take care of memory clean up.

FrAdcDataSetDataValid, ..SetFShift, ...SetTOffset

Syntax:
void FrAdcDataSetAux (FrAdcData *adc, FrVect *aux);
void FrAdcDataSetDataValid (FrAdcData *adc, unsigned short dataValid);
void FrAdcDataSetFShift (FrAdcData *adc, double fShift, float phase);
void FrAdcDataSetTOffset (FrAdcData *adc, double tOffset);

These functions set some fields in the FrAdcData structure.

FrDetector

void FrDetectorDump (FrDetector *detector, FILE *fp, int debugLvl); Dump a detector structure.
FrDetector *FrDetectorNew (char *name); Allocate a detector structure
void FrDetectorFree (FrDetector *detector); Free a detector structure and associated data.

FrEvent

Constructor: FrEvent *FrEventNew (FrameH *frameH,
 char *name, char *comment, char *inputs,
 double GTime, float timeBefore, float timeAfter,
 float amplitude, float probability, char *stat,
 FrVect *data, int nParam, ...);
When nParam is not zero, the event parameters are added right after nParam as a sequence of name[0], value[0],
name[1], value[1],... WARNING: the type of the additional parameters needs to be a 'double' even if they are store
as 'float'.
Example of use:
 event = FrEventNew(frame, "Inspiral","MBTA algorithm with 2.5PN templates","V0:Pr_B1_ACq"
 710123123.44, 10., 0.1, 1.e-21, 5.3, "signal/rms", NULL, 3, "m1", 1.4, "m2", 1.4, "chi2" 3.2);
To copy one event (and the associated data if any, but not the linked list): FrEvent* FrEventCopy (FrEvent
*eventl);
Dump: void FrEventDump (FrEvent *event, FILE *fp, int debugLvl);
Destructor: void FrEventFree (FrEvent*event);
Find it in a frame: FrEvent *FrEventFind(FrameH *frame, char *name, FrEvent *last). Since there could be

11 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

more than one event with the same name in one single frame, the "last" parameters is used to make the selection.
This function will return the next FrEvent structure following the last structure in the linked list and matching the
"name". If last = NULL, the function returns the first event.
To add an event to a frame: void FrameAddEvent(FrameH *frame, FrEvent *event). The event(s) (a single one
or a linked list) is added at the end of the event linked list of this frame.
File random access

To find all the events within a given time range and with some selection on the event amplitude:
FrEvent *FrEventReadT (FrFile *iFile, char *name, double tStart, double length, double
amplitudeMin, double amplitudeMax);
This function perform a random read access on the file *iFile. It returns all FrEvent structure (as a
linked list) which have a time between tStart and tStart+length and with an amplitude in the
[amplitudeMin, amplitudeMax] range. It does NOT returns the associated vector nor the associated
tables (this could be added later on using FrEVentReadData). The string name could contain several
names and wild cards. The function returns a pointer to the first FrEvent structure of the linked list or
NULL in case of error (frame not in file, not Table Of Content, malloc failed).
To find all the events within a given time range and with some selection on several parameters.:
FrEvent *FrEventReadTF (FrFile *iFile, char *name, double tStart, double length, int
readData, int nParam, ...);
 the additional parameters are: char* paramName1, double min1, double max1, char*
paramName2, ...) where the paramName* are "amplitude", "timeBefore", "timeAfter" or one of the
extra event parameter

This function perform a random read access on the file *iFile. It returns all FrEvent structure (as a
linked list) which have a time between tStart and tStart+length and with the extra parameters in the
required range.The associated vector is read if the readData flag is set to 1 (or not read if set to 0). The
string name could contain several names and wild cards. The function returns a pointer to the first
FrEvent structure of the linked list or NULL in case of error (frame not in file, not Table Of Content,
malloc failed).
Example of use: event = FrEventReadTF(iFile,"Inspiral*",t0,50.,1, 2, "M1", 2., 3., "M2", 1., 3.); will
return the linked list of all events with a name starting by Inspiral, with a time in the t0, t0+5à range,
with a parameter M1 (and M2) in the range 2.;3. (1.;3.).
To read the associated vector for one event:
int FrEventReadData (FrFile *iFile, FrEvent *event);

Parameters handling:
Add one more parameter to an event:
FrEvent *FrEventAddParam (FrEvent *event, char* paramName, double value);
This function returns NULL in case of error (bad input parameters of malloc failed).
Add one vector parameter to an event:
int FrEventAddVect (FrEvent *event, FrVect* vect, char* newName);
int FrEventAddVectF (FrEvent *event, FrVect* vect, char* newName);
This function attach a copy of a vector (cast to a vector of float for ...AddVectF) to an event. If newName is
not NULL, the vector name is changed. It returns 0 in case of success.
Get the value for one parameter:
double FrEventGetParam (FrEvent *event, char* paramName);
This function returns -1. if the parameter could not be found.
Get event the parameter id:
int FrEventGetParamId (FrEvent *event, char* paramName);
This function returns the parameter number in the list or -1 if the parameter could not be found. The
parameter value could then be access at event->parameters[id].
To find the pointer to a vector attached to the event:
FrVect* FrEventFindVect (FrEvent *event, char* vectName);
This function returns a pointer to the vector or NULL if not found. The user should NOT free the vector.
To return a copy of a vector attached to the event:
FrVect* FrEventGetVect D(FrEvent *event, char* vectName);
FrVect* FrEventGetVect F(FrEvent *event, char* vectName);
This function returns a pointer to a copy of type double (..VectD) or float (...VectF) of a vector or NULL if

12 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

not found. The user MUST free the vector after its use.

Input File: FrFileI

FrFileIDump

This function dumps a summary (file name starting time and file length) of a file. This could be used to create
Frame File List.
Syntax : void FrFileIDump (FrFile *iFile, FILE *fp, int debugLvl, char *tag);
If debugLvl = 0, then only the available values of start time are printed. To get the real values, you need to set
debugLvl to 2. The 'tag' parameter is used to defined a list of channel for which we require some information (for
instance, use tag = "*B1*" to get only the list of channel with a name containing 'B1'.
Example: FrFileIDump (file, stdout, 1, NULL); will dump on the standard output all the file names and time
information.

FrFileIEnd: close a input file

This function close an input file and free all the associated structures.
Syntax: void FrFileIEnd (FrFile *iFile);

FrFileIGetVect, ...GetV, ...VectF, ...VectFN, ...VectD, ...VectDN:

These functions provide random access for the vector of a single channel (FrAdcData, FrSimData or FrProcData)
called 'name'. The starting GPS time is tStart, the vector length in seconds is length.
Syntax:

FrVect *FrFileIGetVect(FrFile *iFile, char *name, double tStart, double length);
FrVect *FrFileIGetVectD(FrFile *iFile, char *name, double tStart, double length);
FrVect *FrFileIGetVectDN(FrFile *iFile, char *name, double tStart, double length);
FrVect *FrFileIGetVectF(FrFile *iFile, char *name, double tStart, double length);
FrVect *FrFileIGetVectFN(FrFile *iFile, char *name, double tStart, double length);

The returned vector start at the requested time and last exactly the requested number of second (this is new since
version 5).
The vector is converted to a vector of floats (type=FR_VECT_4R) for ...GetVectF and ...GetVectFN or double
(type=FR8VECT_8R) for ...GetVectD or ...GetVectDN
The fonctions FrFileIGetVectDN and ...VectFN return a normalized vector using the FrAdcData information.
FrFileIGetV is the old name for FrFileIGetVect.
If there are missing frames in the request time stretch, the corresponding bins are filled with the vector mean value
and an additional vector is returned attached to the next field of the main vector. This vector gives for each
expected frame 0 if the frame was not found or an integer value (usually 1) corresponding to the number of frame
found for this time. This default value could be changed using the FrVectSetMissingValues(FrVect *vect, double
default) That set the missing values do "default" and returns the number of bin set.
After using it, the user should free the memory by calling FrVectFree since the FrVect structure has been directly
extract from a file without frame to take care of memory clean up.

FrFileIGetVAdc, FrFileIGetSim, FrFileIGetProc:

These functions are identical to FrFileIGetV, except that they search for only one kind of channel: FrAdcData,
FrSimData or FrProcData.
Syntax:

FrVect *FrFileIGetVAdc (FrFile *iFile, char *name, double tStart, double length);
FrVect *FrFileIGetVSim (FrFile *iFile, char *name, double tStart, double length);
FrVect *FrFileIGetVProc (FrFile *iFile, char *name, double tStart, double length);

FrFileIGetXXXNames:

13 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

Syntax:
FrVect *FrFileIGetAdcNames(FrFile *iFile);
FrVect *FrFileIGetDetectorNames (FrFile *iFile);
FrVect *FrFileIGetEventNames (FrFile *iFile);
FrVect *FrFileIGetProcNames(FrFile *iFile);
FrVect *FrFileIGetSimNames(FrFile *iFile);
FrVect *FrFileIGetSimEventNames (FrFile *iFile);
FrVect *FrFileIGetStatNames (FrFile *iFile);

These functions extract channel or event names from the Table Of Content. It returns one vector containing the list
of names (vector of char *: FR_VECT_STRING) or NULL in case or error.

FrFileIGetFrameInfo:

Syntax: FrVect *FrFileIGetFrameInfo (FrFile *iFile, double tStart, double length);
This function extracts frame information from the Table Of Content. The tStart and length arguments could be used
to specify a time range. It returns a linked list of three vectors (or NULL in case or error):

The Frame GPS starting time (vector of double)
The frame length (vector of double)
The frame data quality (vector of int)

There is one entry per frame in these vector. The frame are sorted by increasing GPS time.

FrFileIGetChannelList:

Syntax: char* FrFileIGetChannelList(FrFile *iFile, int gtime);
This function allocate and return a string containing the list of channels contained in a file at a given GPS time and
additional meta data.
The user should take care of the memory free.
If gtime == 0, the channel list is return for the current file position or for the beginning of the file if no frame has
been read

FrFileIGetEventInfo and SimEventInfo:

Syntax:
 FrVect *FrFileIGetEventInfo (FrFile *iFile, char *tag, double tStart, double length,
 double amplitudeMin, double amplitudeMax);
 FrVect *FrFileIGetSimEventInfo (FrFile *iFile, char *tag, double tStart, double length,
 double amplitudeMin, double amplitudeMax);
These functions extract (simulated) event information from the Table Of Content. The tStart and length arguments
could be used to specify a time range as well the minimum and maximum amplitude. The paramter "tag" let you
select the events you want. It could contain wilde cards. If tag = "*" then all events are selected. It returns a linked
list of two vectors (or NULL in case or error):

The event GPS time (vector of double)
The event amplitude (vector of float)

The events are sorted by increasing GPS time.

FrFileINew:

This function open one or several files.
Syntax: FrFile *FrFileINew (char *fileName); where fileName could be:

a single file name like "file1.dat"
a list of files separeted by space like "file1.dat file2.dat". In that case file1.dat will be first open and when all
the frames from this file will by read, it will automatically open the file file2.dat without any special action
from the user. It is an easy way to concatenate files. Or to use several files with random access.
a Frame File List. This is an ASCII file with the file extension ".ffl". which contain either:

14 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

a plain list of file like
file1.dat
file2.dat
file3.dat
a list a file with GPS information for the file start, file length, time of the first event, time of the last
event. This is the output of the FrDump tool with the "-d 0" option. So the best way to build the ffl is to
issue a command like "FrDUmp -i file*gwf -d 0 > file.ffl". This will give for instance:
file1.dat 666000000.000000 11 666000000.200000 666000010.100000
file2.dat 666000011.000000 11 666000011.200000 666000021.100000
file3.dat 666000022.000000 11 666000022.200000 666000032.100000
These full ffl provide efficient random access on a large number of files.

Remark: all file name should start by an non digit character.
To read frames from a buffer, see the function FrameReadFromBuf
If you want to turn off the decompression during frame read you should type after the file opening:

iFile->compress = 1;

Then all the vectors will remain compressed.

FrFileINewFd

This function open an input file for a given file descriptor
Syntax : FrFile *FrFileINewFd (FrIO *frfd);
This function returns a pointer to the input file or NULL if an error occurs.

FrFileIRewind

This function rewind to file. The next FrameRead will then return the first frame in the file.
Syntax : FrFile *FrFileRewind (FrFile *file);
This function returns a pointer to the input file or NULL if an error occurs.

FrFileISetTime

This function set the file to a given GPS time.The next frame read will be for this GPS time.
Syntax : int FrFileSetTime(FrFile *file, double gpsTime);

FrFileITFirstEvt, FrFileITLastEvt

This function return the GPS time of the first/last event in the file(s). If more than one file is given, it returns the
minimum event time and the maximum event time for all the files. These functions work only for files with table of
content. They return a negative time in case of error.
Syntax :

double FrFileITFirstEvt (FrFile *iFile);
double FrFileITLastEvt (FrFile *iFile);

FrFileITStart, FrFileITEnd

This function return the GPS time of the first/last frame in the file(s). If more than one file is given, it returns the
minimum starting time and the maximum end time of all files. They work only for files with table of content. They
return a negative time in case of error.
Syntax :

double FrFileITStart (FrFile *iFile);
double FrFileITEnd (FrFile *iFile);

FrFileITNextFrame

15 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

Syntax : double FrFileITNextFrame (FrFile *iFile, double gtime);
This function return the GPS time of the next frame (ie the frame starting after gtime). It works only for files with
table of content. It returns a negative time in case of error.

Output File: FrFileO

FrFileOEnd:

To close an output file, you need to call:
int FrFileOEnd (FrFile *file);

FrFileONewXXX

This function open an output file for a given name. or file descriptor.
Syntax:

FrFile *FrFileONew (char *fileName, int compress);
FrFile *FrFileONewH (char *fileName, int compress, char *program);
FrFile *FrFileONewM (char *fileName, int compress, char *program, int maxLength);
FrFile *FrFileONewFd (FrIO *frfd, int compress);

compress gives the compression algorithm used at writing time.
-1 to write data without changing the initial compression state
0 for no compression,
1 for gzip (The level of gzip compression could be set by a call to FrFileOSetGzipLevel (file, level) with
0<level<10. The default value is level=1.)
3 for differentiation and gzip.
5 for differentiation and zeros suppress (only for short)
6 for differentiation and zeros suppress for short and gzip for other.
8 for differentiation and zeros suppress for short int and float and gzip for other. (recommended)

FrFileONewH has an extra argument (program) which is string which will be added to the history record at writing
time.
FrFileONewM has one more extra parameter: maxLength that define the maximum length for a file in second.
When this mawimum is reached, the file is closed and a new one is open. This is convienent to handle large data set.
The name of these files is no more just "fileName" but "fileName-GPS-maxLength.gwf " (like
V-R-730123000-100.gwf if fileName = "V-R").
When an output file has been open, you can suppress the writing of the Table Of Content for the time series
(FrAdcData, FrSimData, FrProcDat, FrSerData, Summary) by setting:

oFile->noTOCts = FR_YES;

FrFileOPutV

This function write on or more vectors in a file. It automatically create a frame and attach an
FrProcData channel that own the vector as data member.
Syntax:

int FrFileOPutV (FrFile *oFile, FrVect *vect);

This function returns 0 in case of succes or an error code.
The GPS time of the vector (vect->GTime) needs to be properly set if more than one vector is put in the
file.

FrFileOSetMsg

16 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

This function sets the name used at writing time for the history record.
Syntax: void FrFileOSetMsg (FrFile *oFile, char *msg);
Remark: if msg = NULL no history message will be added to the file. However, it is advised to always add a history
record.

File Checksum

File checksum are computed when writing a file on disk. They are not computed/checked when the frame is write or
if the frame is written in memory.
To turn on(or off) the checksum computation/check just: iFile->chkSumFlag == FR_YES (or FR_NO); after the
file has been open (FrFileIOpen or FrFileOOpen).
The utility FrCheck could be used to verify the file checksum.
Checksum are available only since version 4.40

FrFilter

A filter structure as be set up to hold lilnear filter information to be stroed in file. The following function could be
used to manage them. See the FrFilter.h file for more details:

void FrFilterFree(FrFilter* filter);
FrFilter* FrFilterNew(char* name, double fs, double gain, int ntaps, ...);
constructor: the additional parameters are ntaps "a" values followed by ntaps "b" values
void FrFilterDump(FrFilter *f, FILE *fp, int debugLvl);
This function dumps on file fp (like 'stdout') the filters parameters
FrVect* FrFilterPackToVect(FrFilter *filter);
This function creates a vector containing the content of the filter
FrFilter* FrFilterGetFromVect(FrVect *vect);
This function creates a filter which was previously packed in a vector
void FrProcDataAddFilter(FrProcData *proc, FrFilter *Filter);
this function pack a filter into a vector and attach it to the proc data. The filter structure is untouched
FrFilter* FrProcDataGetFilter(FrProcData *proc, char *name);
This function creates a FrFilter structure according to the parameters of the filter called "name" and attached
to the proc data
void FrStatDataAddFilter(FrStatData *stat, FrFilter *filter);
FrStatData* FrameAddStatFilter(FrameH* frame, char* detectorName,char* statDataName,
unsigned int tStart, unsigned int tEnd, unsigned int version, FrFilter *filter)
FrFilter* FrameGetStatFilter(FrameH *frame, char *detectorName, char *statDataName, char
*filterName, int gpsTime);

FrHistory

The best way to add an history record is to used the FrFileONewH function which will set the default history record
produced at each FrameWrite to the one you want. However, the FrHIstory records could be manipulated using the
following functions.

FrHistoryAdd

This function add an history record. A time stamp is automatically added. The string comment is provided by the
user. Its format is free. If frame = NULL the history structure is created but not attached to the frame header. These
history records are useful to keep track of the various frame processing. This function returns the pointer to the first
History structure or NULL in case of malloc error.

17 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

Syntax: FrHistory *FrHistoryAdd (FrameH *frame, char *comment);

FrHistoryFree

This function free the history records and all attached history.
Syntax: void FrHistoryFree (FrHistory *history);

FrMsg

An online log message could be added to the frame by using the function:
FrMsg *FrMsgAdd (FrameH *frame, char *alarm, char *message, unsigned int severity);
The string message as well as the alarm name are provided by the user. Its format is free. The severity value is
provided by the user. frame = NULL is a valid option. This function returns the pointer to the FrMsg structure or
NULL in case of malloc error.
To dump it : void FrMsgDump (FrMsg *msg, FILE *fp, int debugLvl);
Find it in a frame: FrMsg *FrMsgFind(FrameH *frame, char *alarm, FrMsg *last). Since there could be more
than one FrMsg with the same name in one single frame, the "last' parameters is used to make the selection. This
function will return the next FrMsg structure following the last structure in the linked list and matching the "name".
If last = NULL, the function returns the first found structure.

FrProcData

These functions have the same meaning as for the FrAdcData structure:
Constructor: FrProcData *FrProcDataNew (FrameH *frame, char *name, double sampleRate, int
nData, int nBits);
Dump: void FrProcDataDump (FrProcData *procData, FILE *fp, int debugLvl);
Destructor: void FrProcDataFree (FrProcData *procData);
Find it in a frame: FrProcData *FrProcDataFind (FrameH *frame, char *name)
File random access (FrProcData and vector): FrProcData *FrProcDataReadT (FrFile *iFile, char *name,
double gtime)
To add an history record: FrHistory *FrProcDataAddHistory(FrProcData *proc, char *comment, int
nPrevious, ...). This function will add an history record containing the comment "comment" and will copy
"nPrevious" previous history record(s) from other FrProcData. The additional parameters are the "nPrevious"
FrHistory structures. The usage is the following:

FrProcDataAddHistory(proc, "FFT(V1:Pr_B1_ACq)", 0) will add only one history record
FrProcDataAddHistory(proc, "A+B", 2, procA->history, procB->history) will add one history
record and will copy the history records from procA and procB where procA and procB are
FrProcData structures

Parameters handling:

Add a parameter to an FrProcData structure: FrProcData *FrProcDataAddParam
(FrProcData *proc, char* paramName, double value); This function returns NULL in case of
error (bad input parameters or malloc failed).
Get parameter value: double FrProcDataGetParam (FrProcData *proc, char* paramName);
 This function returns -1. if the parameter could not be found.
Get parameter id: int FrProcDataGetParamId (FrProcData *proc, char* paramName);
 This function returns the parameter number in the list or -1 if the parameter could not be
found. The parameter value could then be access at proc->auxParam[id].

To attach a vector to a procData: void FrProcDataAttachVect(FrProcData *proc, FrVect *vect);

18 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

Afte this call the vector still belong to the procData and the user must NOT try to free it.
To find the vector named "name" attached to one procData: FrVect* FrProcDataFindVect(FrProcData
*proc, char *name);
After this call, the vector is still own by the proc data (the user must NOT free it).

FrSerData

Unless specified, these functions have the same meaning as for the AdcData structure:
Constructor: FrSerData *FrSerDataNew (FrameH *frame, char *smsName, unsigned int serTime, char
*data, double sampleRate); The SerData is defined by a name and a GPS time. Usually the data are all
included in the data string. The suggest form is to use a string which is a sequence of names and values (for
instance "P1 1.e-6 P2 1.e-7")
Dump: void FrSerDataDump (FrSerData *serData, FILE *fp, int debugLvl);
Destructor: void FrSerDataFree (FrSerData *serData);
Find it in a frame: FrSerData *FrSerDataFind (FrameH *frame, char *name, FrSerData *last). Since
there could be more than one FrSerData with the same name in one single frame, the "last' parameters is used
to make the selection. This function will return the next FrSerData structure following the last structure in the
linked list and matching the "name". If last = NULL, the function returns the first found structure.
Find the value of one parameter (smsParama): int FrSerDataGet (FrameH *frameH, char *smsName,
char *smsParam, double *value); It assumes that the data are stored in the data string as names followed by
values for the serial data smsName. It returns 0 in case of success.
File random access: FrSerData *FrSerDataReadT (FrFile *iFile, char *name, double gtime)

FrSimData

FrSimData *simData, FILE *fp, int debugLvl);
Destructor: void FrSimDataFree (FrSimData *simData);
Find it in a frame: FrSimData *FrSimDataFind (FrameH *frame, char *name)
File random access (FrSimData and vector): FrSimData *FrSimDataReadT (FrFile *iFile, char *name, double
gtime)
File random access (associated vector for one or more frame): FrVect *FrFileGetVSim (FrFile *iFile, char *name,
double tStart, double length)

FrSimEvent

Unless specified, these functions have the same meaning as for the AdcData structure:
Constructor: FrSimEvent *FrSimEventNew (FrameH *frameH,
 char *name, char *comment, char *inputs,
 double GTime, float timeBefore, float timeAfter,
 float amplitude, FrVect *data, int nParam, ...);
When nParam is not zero, the event parameters are added right after nParam as a sequence of name[0],
value[0], name[1], value[1],...
Example of use:
 event = FrSimEventNew(frame, "CBSim","coalescing binariy", "2.5PN templates",
 710123123.44, 10., 0.1, 1.e-21, NULL, 2, "m1", 1.4, "m2", 1.4);
Parameters handling:

Add one more parameter to an event: FrSimEvent *FrSimEventAddParam (FrSimEvent
event, char paramName, double value); This function returns NULL in case of error (bad
input parameters of malloc failed).
Add one vector parameter to an event:
int FrSimEventAddVect (FrSimEvent *event, FrVect* vect, char* newName);

19 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

int FrSimEventAddVectF (FrSimEvent *event, FrVect* vect, char* newName);
This function attach a copy of a vector (cast to a vector of float for ...AddVectF) to an event. If
newName is not NULL, the vector name is changed. It returns 0 in case of success.Get the value
for one parameter: double FrSimEventGetParam (FrSimEvent *event, char* paramName);
This function returns -1. if the parameter could not be found.
Get event the parameter id: int FrSimEventGetParamId (FrSimEvent *event, char*
paramName); This function returns the parameter number in the list or -1 if the parameter could
not be found. The parameter value could then be access at event->parameters[id].
To find the pointer to a vector attached to the event:
FrVect* FrSimEventFindVect (FrEvent *event, char* vectName);
This function returns a pointer to the vector or NULL if not found. The user should NOT free the
vector.
To return a copy of a vector attached to the event:
FrVect* FrSimEventGetVect D(FrEvent *event, char* vectName);
FrVect* FrSimEventGetVect F(FrEvent *event, char* vectName);
This function returns a pointer to a copy of type double (..VectD) or float (...VectF) of a vector or
NULL if not found. The user MUST free the vector after its use.

Dump: void FrSimEventDump (FrSimEvent *simEvent, FILE *fp, int debugLvl);
Destructor: void FrSimEventFree (FrSimEvent *simEvent);
Find it in a frame: FrSimEvent*FrSimEventFind (FrameH *frame, char *name, FrSimEvent *last). Since
there could be more than one FrSimEvent with the same name in one single frame, the "last' parameters is
used to make the selection. This function will return the next FrSimEvent structure following the last structure
in the linked list and matching the "name". If last = NULL, the function returns the first found structure.
File random access (FrSimEvent and vector): FrSimEvent *FrSimEventReadT (FrFile *iFile, char
*name, double tStart, double length, double amplitudeMin, double amplitudeMax);
This function perform a random read access on the file *iFile. It returns all (as a link list) FrSimEvent
structure which have a time between tStart and tStart+length and with an amplitude in the [amplitudeMin,
amplitudeMax] range. It returns also the associated vector (if any) but not the associated tables. The string
name could contain several names and wild card. The function returns a pointer to the first FrSimEvent
structure of the linked list or NULL in case of error (frame not in file, not Table Of Content, malloc failed).
File random access

To find all the events within a given time range and with some selection on the event amplitude:
FrSimEvent *FrSimEventReadT (FrFile *iFile, char *name, double tStart, double length,
double amplitudeMin, double amplitudeMax);
This function perform a random read access on the file *iFile. It returns all FrEvent structure (as a
linked list) which have a time between tStart and tStart+length and with an amplitude in the
[amplitudeMin, amplitudeMax] range. It does NOT returns the associated vector nor the
associated tables. The string name could contain several names and wild cards. The function
returns a pointer to the first FrEvent structure of the linked list or NULL in case of error (frame
not in file, not Table Of Content, malloc failed).
To find all the events within a given time range and with some selection on several parameters.:
FrSimEvent *FrSimEventReadTF (FrFile *iFile, char *name, double tStart, double length,
int readData, int nParam, ...);
 the additional parameters are: char* paramName1, double min1, double max1, char*
paramName2, ...) where the paramName* are "amplitude", "timeBefore", "timeAfter" or one of
the extra event parameter
This function perform a random read access on the file *iFile. It returns all FrEvent structure (as a
linked list) which have a time between tStart and tStart+length and with the extra parameters in
the required range.The associated vector is read if the readData flag is set to 1 (or not read if set
to 0). The string name could contain several names and wild cards. The function returns a pointer
to the first FrEvent structure of the linked list or NULL in case of error (frame not in file, not
Table Of Content, malloc failed).
Example of use: event = FrEventReadTF(iFile,"Inspiral*",t0,50.,1, 2, "M1", 2., 3., "M2", 1.,
3.); will return the linked list of all events with a name starting by Inspiral, with a time in the t0,
t0+5à range, with a parameter M1 (and M2) in the range 2.;3. (1.;3.).

20 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

FrStatData

A static data is a structure which may stay for more than one frame. It is written on tape only once. These data stay as
long as they are valid compare to the frame time boundary, or as long there is not a new bloc of data with the same name
but with an highest version number. In the case of long frames there could be several static data with the same name if
they have different starting times which cover the frame duration.

FrStatDataAdd

This function add a static data bloc.
void FrStatDataAdd (FrDetector *detector, FrStatData *sData);

See also:

int FrameAddStatData(FrameH* frame, char* detectorName, FrStatData *stat);
This function attached a static data to a detector structure belonging to this frame.
If no detector exist for this name, a new one is created.
If name is NULL, it is attached to the first detector or to a new detector called "Default" is there is no detector
structure.
Any new detector structure is attached to the frame->detectProc list.
FrStatData* FrameAddStatVector(FrameH* frame, char* detectorName, char* statDataName,
unsigned int tStart, unsigned int tEnd, unsigned int version, FrVect* vect);
This function attached a vector to a static data to a detector structure belonging to this frame.
If no detector exist for this name, a new one is created.
If name is NULL, it is attached to the first detector or to a new detector called "Default" is there is no detector
structure.
 Any new detector structure is attached to the frame->detectProc list.
int FrDetectorAddStatData(FrDetector* detector, FrStatData *stat);
This function attached a static data to a detector structure. The user must NOT free the static data since it will
then belong to the detector.
void FrStatDataAddVect(FrStatData *stat, FrVect *vect);
This function attached a vector to a static data structure. The user must NOT free the vector since it will then
belong to the static data.

FrStatDataDump

To dump the static data content on the FILE 'fp' (useful values of debugLevel are 1, 2, or 3):
void FrStatDataDump (FrStatData *sData, FILE *fp, int debugLevel);

FrStatDataFind

This function find a static data bloc.
FrStatData *FrStatDataFind (FrDetector *detector, char *name, unsigned int timeNow);
timeNow is the time for which we want the static data. If timeNow = 0 then the first static data with that name is
return.
See also:

FrVect* FrameGetStatVect(FrameH *frame, char *detectorName, char *statDataName, char
*vectorName, int gpsTime);
This function return a copy vector named "vectorName" attached to the static data named "statDataName".
The user must take car of the vector free to avoid memory leak.
FrStatData *FrameFindStatData(FrameH *frame, char *detectorName, char *statDataName, int
gpsTime);
This function return the pointer to the static data named "statDataName" and attached to a frame.
The user must NOT free the structuer after using it.
FrStatData* FrDetectorFindStatData(FrDetector *det, char *statDataName, int gpsTime);
This function return the pointer to the static data named "statDataName" and attached to a detector.
The user must NOT free the structuer after using it.

21 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

FrStatDataFree

This function free the static data bloc including the vectors and all attached static data.
void FrStatDataFree (FrStatData *sData);

FrStatDataFreeOne

This function free the static data bloc including the vectors. It returns the pointer to the next bloc in the linked list.
FrStatData *FrStatDataFree (FrStatData *sData);

FrStatDataNew

This function creates a new static data bloc.
FrStatData *FrStatDataNew (char *name, char *comment, char *represent, unsigned int tStart, unsigned
int tEnd, unsigned int version, FrVect *data, FrTable *table);
where:

name is the name of this bloc of static data.
comment is some user information
tStart is the starting time (GPS) of validity for this bloc
tEnd is the end time (GPS) of validity for this bloc (tEnd = 0 means no end)
version is the static data version number provided by the user
data is the data bloc (like a vector) provided by a user.

* To attach a static bloc to a frame you should attach it to one detector structure.

FrStatDataReadT

To extract on static data block from a file using a random access readt.
FrStatData *FrStatDataReadT (FrFile *iFile, char *staticDataName, double gpsTime);

FrStatDataTouch

When you update the content of a static data bloc you should tell the system by calling:
void FrStatDataTouch (FrStatData *sData);

FrSummary

Unless specified, these functions have the same meaning as for the AdcData structure:
Constructor: FrSummary *FrSummaryNew (FrameH *frame, char *name, char *comment, char *test,
FrVect *moments, FrTable *table);
Dump: void FrSummaryDump (FrSummary *summary, FILE *fp, int debugLvl);
Destructor: void FrSummaryFree (FrSummary *summary);
Find it in a frame: FrSummary *FrSummaryFind (FrameH *frame, char *name).
File random access (FrSimEvent and vector): FrSummary *FrSummaryReadT (FrFile *iFile, char
*name, double tStart, double length); This function perform a random read access on the file *iFile. It
returns all (as a link list) FrSummary structure which have a time between tStart and tStart+length. It returns
also the associated vector (if any) but not the associated tables. The string name could contain several names
and wild card. The function returns a pointer to the first FrSummary structure of the linked list or NULL in
case of error (frame not in file, not Table Of Content, malloc failed).

FrTable

Complex tables could be created to stored different types of object. However, tables are not efficient for small

22 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

numbers of values where a simple string encoding or a plain vector is more efficient.
Constructor: FrTable *FrTableNew (char *name, char *comment, int nRow, int nColumn, ...);
Constructor: FrTable *FrTableCopy (FrTable *table);
Constructor: void FrTableExpand (FrTable *table);
Dump: void FrTableDump (FrTable *table, FILE *fp, int debugLvl);
Access on column: FrVect* FrTableGetCol (FrTable *table, char *colName);
Destructor: void FrTableFree (FrTable *table);

FrVect: Vectors handling

FrVectNew

This function create a multi dimension vector.
Syntax: struct FrVect *FrVectNew (int type, int nDim, ...);
The parameters (provided by the user) are:

type the type of data stored. It could be one of the following value:
FR_VECT_C, /* vector of char */
FR_VECT_2S, /* vector of signed short */
FR_VECT_4S, /* vector of signed int */
FR_VECT_8S, /* vector of signed long */
FR_VECT_1U, /* vector of unsigned char */
FR_VECT_2U, /* vector of unsigned short */
FR_VECT_4U, /* vector of unsigned int */
FR_VECT_8U, /* vector of unsigned long */
FR_VECT_8R, /* vector of double */
FR_VECT_4R, /* vector of float */
FR_VECT_8C, /* vector of complex float (2 words per number)*/
FR_VECT_16C, /* vector of complex double (2 words per number)*/
FR_VECT_STRING; /* vector of string *
FR_VECT_2U, /* vector of unsigned short */
FR_VECT_8H, /* half complex vectors (float) (FFTW order) */ (not part of the frame format; convert to 8C when writing to file)
FR_VECT_16H, /* half complex vectors (double) (FFTW order) */ (not part of the frame format; convert to 16C when writing to file)

nDim the number of dimension (1 for a vector, 2 for an image,...)
nx[0] The number of element for each dimension (0 is a valid value)
dx[0] The step size for each dimension
unitX[0] The unit for each dimension .
Then, additional parameters for multi dimension vectors:
nx[1], dx[1], unitX[1], nx[2],...

This function return NULL in case of problem (not enough memory). After creation, all the different type of pointer
in the FrVect structure point to the same data area. The names of these pointers are:

char *data;
short *dataS;
int *dataI;
long *dataL;
float *dataF;
double *dataD;
unsigned char *dataU;
unsigned short *dataUS;
unsigned int *dataUI;
unsigned long *dataUL;

For example to create a vector to hold image from a CCD camera (2 dimension vector of 512x512 pixels of 15
microns):

23 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

 vect = FrVectNew (FR_VECT_2S,2,512,15., "microns",512,15., "microns");

Remark: by default, the vector space is initialized to zero. To bypass this iinitialization, put a minus sign in front of
the type argument.

FrVectNewTS

This function creates a one dimension time serie vector. Like for an FrAdcData, the vector type is set according the
number of bit (integer for positive values, float or double for negative value)
Syntax: FrVect *FrVectNewTS (char *name, double sampleRate, int nData, int nBits)
The parameters (provided by the user) are:

name the name of the vector
sampleRate: sampling frequency
nData The number of elements (0 is a valid value)
nBits: number of bits.

FrVectNew1D

This function creates a one dimension vector.
Syntax: FrVect *FrVectNew1D (char *name, int type, int nData, double dx, char *unitX, char *unitY)
The parameters (provided by the user) are:

name the name of the vector
type the type of data stored (see FrVectNew).
nData The number of elements (0 is a valid value)
dx The step size
unitX The step unit (NULL is a valid value) .
unitY The content unit (NULL is a valid value) .

FrVectFree

 This function free a vector and its memory allocated space
Syntax: void FrVectFree (struct FrVect *vect)

FrVectCompress

This function compress a vector.
Syntax: void FrVectCompress (FrVect *vect, int compress, int gzipLvl) were:

vect is the vector provided by the user
compresses the type of compression:

6 for differentiation and zeros suppress for short and gzip for other
7 for differentiation and zeros suppress for short, int and float to integer (not part of the current frame
format)
8 for differentiation and zeros suppress for short, int and float. (not part of the current frame format)
255 for user defined compression code (definitely not part of the frame format)

gzipLvl is the gzip compression level (provided by the user). 0 is the recommended value.
In normal use, the compression is done at frame write and the user do not need to take care of it.

FrVectCopy

This function duplicates a vector and its data:
Syntax: FrVect *FrVectCopy (FrVect *in)
This function returns NULL in case of problem (not enough memory).

24 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

FrVectCopyToF, FrVectCopyToD, FrVectCopyToI, FrVectCopyToS

Syntax:
 FrVect * = FrVectCopyToF(FrVect *vect, double scale, char* newName);
 FrVect * = FrVectCopyToD(FrVect *vect, double scale, char* newName);
 FrVect * = FrVectCopyToI(FrVect *vect, double scale, char* newName);
 FrVect * = FrVectCopyToS(FrVect *vect, double scale, char* newName);
These functions create a new vector of type float (FrVectCopyToF), double (FrVectCopyToD), int
(FrVectCopyToI) or short (FrVectCopyToS). The data are copy using the scale factor 'scale' and casted to the
proper type. The new vector will have the same name as the original one except if a newName is provided (value
non NULL).
These functions return NULL in case of error (malloc failed, no input vector).
Supported input types: all types except complex. Syntax: FrVect * = FrVectCopyTo(FrVect *vect,
double scale, FrVect *copy);
 This function copy the data from vector vect to the vector copy using the scale factor 'scale'and casted to the vector
copy type.
 This function returns NULL in case of error (malloc failed, no input vectors).
 Supported types: all types for vect except complex: float, double, int and short for copy.

FrVectDump

To dump a vector in a readable format:
Syntax: void FrVectDump (FrVect *vect, FILE *fp, int debugLvl) were

vect is the vector provided by the user
fp is the file pointer where the debug information will be send.
dbglvl is the debug level provided by the user. 0 means no output at all, 1 gives a minimal description (<5
lines per frame), 3 give you a full vector dump.

Example: FrVectDump (vect, stdout, 1) will dump the vector information on the standard output.

FrVectDecimate

This function decimates the vector data by averaging nGroup values together if nGroup is positive. If nGroup is
negaive, a pure decimation (no averaging) of -nGroup is performed. The result is put in the vector outVect.
(outVect could be the input vector). If outVect = NULL, the result is put in the input vector. The size of outVect
should be nGroup time smaller than the size of vect.
Syntax: FrVect * FrVectDecimate (FrVect *vect, int nGroup, FrVect *outVect)
Examples:

FrVectDecimate (vect, 2, NULL) will average two by two the vector content of vect.(0, 1, 2, 3, 4, 5...) ->
(0.5, 2.5, 4.5...)
FrVectDecimate (vect, -2, NULL) will take one values out of two input values.(0, 1, 2, 3, 4, 5...) -> (1, 3, 5...)

FrVectDecimateMin, FrVectDecimateMax

These functions decimate the vector data by taking the minimum (maximum) values over nGroup values. The result
is put in the input vector and the memory allocated is schrinked.
Syntax: FrVect * FrVectDecimateMin (FrVect *vect, int nGroup)
Syntax: FrVect * FrVectDecimateMax (FrVect *vect, int nGroup)
Examples:

FrVectDecimateMin (vect, 2) will transform (0, 1, 2, 3, 4, 5) to (0, 2, 4)
FrVectDecimateMax (vect, 2) will transform (0, 1, 2, 3, 4, 5) to (1, 3, 5)

FrVectExpand

This function uncompressed a vector:
Syntax: void FrVectExpand (FrVect *vect) where vect is the vector provided by the user

25 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

In normal use the uncompressed is done by a FrameRead call or by the channel access.

FrVectExtend

Syntax: void FrVectExtend (FrVect *vect, int nTimes, FrVect *outVect, char *newName)
This function extend the data from the vector vect by duplicate nTimes each values and returns the extended vector
(outVect).
The result is put in the vector outVect. The size of outVect should be nTime larger than the size of vect. values.
If outVect is NULL, the output vector is created and named "newName" or as the original vector is newName =
NULL.

FrVectFillX

This function add one value at the end of the vector. The vector size is automatically increased.
Syntax:

int FrVectFillC (FrVect *vect, char value);
int FrVectFillD (FrVect *vect, double value);
int FrVectFillF (FrVect *vect, float value);
int FrVectFillI (FrVect *vect, int value);
int FrVectFillS (FrVect *vect, short value);

This function returns 0 in case of success or a non zero value in case of problem (not enough memory).

FrVectFindQ

For a vector of string, this function returns the index of the string which match the parameter "name" or a negative
value if not found.
Syntax: int FrVectFindQ (FrVect *vect, char *name)

FrVectGetIndex

Syntax: FRLONG FrVectGetIndex(FrVect *vect, double x)
This function returns the bin index for a a given 'x' abcisse.
It returns

-1 if vect == NULL
-2 if vect->dx[0] == 0
-3 if x is lower than the vector start (vect->startX[0])
-4 is x is larger than the vector end.

FrVectGetTotSize

This function returns the total memory used by a FrVect structure (in bytes)
Syntax: FRLONG FrVectGetSize (FrVect *vect)

FrVectGetValueI

This function returns the bin content for a vector at index 'i' or zero if 'i' is outside the vector boundaries.
Syntax: double FrVectGetValueI (FrVect *vect, FRULONG i)
This function replace the obsolete function FrVectGetV.

FrVectGetValueX

This function returns the bin content for a vector at position 'x' or zero if 'x' is outside the vector boundaries.
Syntax: double FrVectGetV (FrVect *vect, double x)

26 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

FrVectHtoC

This function convert an half complex vector to a regular vector.
Syntax: int FrVectHtoC (FrVect *vect)
This function returns 0 in case of success or a non zero value in case of problem (not enough memory).

FrVectIsValid

This function check that all floating points contained in a vector are valid IEEE floating point numbers.
Syntax: itn FrVectIsValid (FrVect *vect) where vect is the vector provided by the user
This function returns 0 if the vector does not contains NaN or INF numbers or if the vector contain only integers. It
returns a non zero value (the index of the first bad value +1) in the other cases.
remark: -0.(minus zero) is a valid floating point for FrVectIsValid.

FrVectLoad

This function read from file a vector which has been saved with the function FrVectSave. It returns NULL in case
of error.
Syntax: FrVect* FrVectLoad(char *fileName)

FrVectMinMax

This function computes the min and max value of the input vector vect. It returns 1 in case of failure or 0 in case of
success.
Syntax: int FrVectMinMax(FrVect *vect, double *min, double *max)

FrVectResample

Syntax: FrVect *FrVectResample(FrVect *vect, int nDataNew, FrVect *outVect, char* newName)
This function resample the dData data from the vector vect to nDataNew values. It returns the resampled vector.
The result is put in the vector outVect that must have the right size (but could have diffrent type). If outVect is
NULL, the output vector is created and named "newName" or as the original vector is newName = NULL.

FrVectSave

This function write on file a vector. It returns 0 in case of success. The vector could be read back using the
FrVectLoad function.
Syntax: int FrVectSave(FrVect *vect, char *fileName)
If fileName == NULL, the output file name is "vectorName_vectorGPStime.vect"

FrVectSetName

This function set or reset the vector name
Syntax: void FrVectSetName(FrVect *vect, char *name)

FrVectSetUnitX

This function set or reset the vector first dimension name
Syntax: void FrVectSetUnitX(FrVect *vect, char *unitX)

FrVectSetUnitY

This function set or reset the vector 'Y' dimension name (bin content)
Syntax: void FrVectSetUnitY(FrVect *vect, char *name)

27 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

FrVectZoomIn

Syntax: int FrVectZoomIn(FrVect *vect, double start, double length)
This function change the vector boundaries. After this call, the vector start at "start" and sas a length "length". The
new vector boundaries could only be within the original boundaries. The unit used is the vector x unit.
This function works only for one dimension vector.
It returns 0 in case of success or an error code.

FrVectZoomInI

Syntax: int FrVectZoomInI(FrVect *vect, int iFirst, int nBin)
Same as FrVectZoomIn except that the arguments are bin numbers.

FrVectZoomOut

Syntax: int FrVectZoomOut(FrVect *vect)
This function cancel the effect of any previous FrVectZoomIn call. It returns 0 in case of success or an error code.

Frame Library Error Handling
Several errors may occurs during the code execution. A typical one is the failure of the memory allocation. In this case,
the functions return NULL. But when the error occurs, a default handler is called. This handler is the following:

/*--- FrErrorDefHandler---*/
void FrErrorDefHandler(level,lastMessage)
int level;
char *lastMessage;
/*--*/
/* default handler for the FrameLib error. */
/* input parameters: */
/* lastMessage: the string which contain the last generated message */
/* level: 2 = warning, */
/* 3 = fatal error: requested action could not be completed*/
/*--*/
{
if(FrDebugLvl > 0)
{fprintf(FrFOut,"%s",lastMessage);
fprintf(stderr,"%s",lastMessage);}
return;}

If the debug level (dbglvl) set by the call to FrLibIni has a value > 0 this handler print debug information on stderr and on
the debug output file. This handler could be changed by the user at the initialization by calling the function:
void FrErrorSetHandler (void (*handler) (int, char *));
At any time the user can get the history of the errors (recorded in one string) by using the function:

char *FrError (0," ","get history");

The Frame Library Installation

Copyright and Licensing Agreement:

This is a reprint of the copyright and licensing agrement of the Frame Library:

28 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

Copyright (C) 2002, B. Mours.

Frame Library Software Terms and Conditions

The authors hereby grant permission to use, copy, and distribute this software and its documentation for any
purpose, provided that existing copyright notices are retained in all copies and that this notice is included verbatim
in any distributions. Additionally, the authors grant permission to modify this software and its documentation for
any purpose, provided that such modifications are not distributed without the explicit consent of the authors and
that existing copyright notices are retained in all copies. Users of the software are asked to feed back problems,
benefits, and/or suggestions about the authors.
Support for this software - fixing of bugs, incorporation of new features - is done on a best effort basis. All bug
fixes and enhancements will be made available under the same terms and conditions as the original software,

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF
THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN IF THE AUTHORS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN "AS IS"
BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Installing the library and associated tools

A compressed (gzip) tar file is available at http://wwwlapp.in2p3.fr/virgo/FrameL.

To uncompress it you should type:

gunzip vXrYY.tar.gz
tar xvf vXrYY.tar

Then you could either

Simple script install:
One script (makegcc) available in the mgr directory build the library (including a shared library). It uses the
GNU (gcc) compiler. The binary is placed in a directory named by the system type (like SunOS or OSF1) in
order to work in a multi platform environment. Remark: On Mac OS X you need to use the makeMacOS
script instead of the standard makegcc script.
To compile the examples/test program, use the script maketest, after using the script makegcc.
To compile on Alpha, using the alpha compiler, use the script makealpha.

Using the configure GNU tools. To use the standard configure tools you just need to untar the various script and
then you can run the usual told. In other words, the command you need to type are

cd vXrYY
tar xvf configure.tar
./configure
make

If you run on a non standard system, you may want to change the low level I/O function calls. By default the Unix
function call are used. To use the standard C FILE library you should compile the code using the option -DFRIOCFILE.
To do more specific changes to the I/O you just need to change the FrIO.c file which group all those function call.

To use a user defined compression code (compression = 255) the functions FrVectUComp and FrVectUExpand should be
provided by the user and the library should be compiled with the option -DFR_USER_COMPRESSION.

29 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

To use long long types you can compile the library with the -D FR_LONG_LONG option.

For any questions about this software, please contact Benoit Mours (mours@lapp.in2p3.fr) or Didier Verkindt
(verkindt@lapp.in2p3.fr).

Computer requirement for The Frame Library

The Frame software requests that the computer is at least a 32 bits computer. The Frame software writes the data in their
original size and format. When reading the data on a different hardware, the frame library performed the byte swapping if
needed (big-endian versus little-endian). It also expends or truncates the INT_8 variables if one machine has only 32 bits
integer. The floating point variables are assumed to be always in IEEE format. The frame software (and installation
scripts) has been tested on the following platforms:

Alpha
Linux
Sun Solaris
HP-UX
Power PC under LynxOS
Cygnus (GNU under Windows)

The Frame Library is ANSI-C code with POSIX compliance.

Test procedure

Once the library and the example have been installed, you can test it by running these examples. The prefix example has
been replace by Fr. So to run the exampleFull, go in your machine sub directory and run FrFull. The first obvious thing to
check is that the example run completely without crashing. Then some of the examples run in loop (like FrMark,
FrMultiR, FrMultiW). They more designed to search for memory leak and it would be a good idea to check that the
program size stay constant. Most of these tests created an frame file called test.dat. Each time this file is created, it is a
good idea to run the utility FrDump with debug 1 and 2 and 3 on these file to check that the file content looks right. The
suggested test sequence is:

FrFull No arguments are needed. This test program produce a file called test.dat with different type of
channel. Try "FrDump -i test.dat -d 3" to check if the file can be read.
FrMark No arguments are needed. This program loop many time on the filecall test.dat. Check that the
program size is stable (no memory leak)
FrStat No arguments are needed. This test program produces a file (called test.dat) with static data. Check
that you can read the file with FrDump.
FrMark No arguments are needed. It will use the test.dat file produced with static data.
FrOnline No arguments are needed. This program write frame in memory. It could be used to search for
memory leaks
FrMultiW No arguments are needed. This program creates 10 differents files which will be used by FrMultiR
FrMultiR No arguments are needed. This program open and close many files. Usefull for memory leak.
FrCompress No arguments are needed. This program test the compression algorithms. It should end with the
message "Compression test OK"
FrSpeed You should provide a file name and compress level. This program is used to estimate the
reading/writeg speed.

The Matlab interface

Introduction

Matlab is a popular numeric computation and visualization Software. Since the Frame library is a plain C software, the
connection between frame files and Matlab is easy to set. In the FrameLib package there is a matlab directory which

30 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

contains:

two MEX-file: frextract.c and frgetvect.c
one script to compile the MEX-file: mymex
three M-file to illustrate the use of the MEX-file:

exampleGetAdc.m Shows how to extract the Adc data from a frame file (using frextract), to plot a time series
and it's FFT.
exampleGetVect.m Shows how to get a vector from a frame file with random access (using frgetvect), to plot
a time series and it's FFT.
exampleAudio.m Shows how to produce and audio file from a frame file.

The purpose of this interface is to provide a direct path to extract data from a frame.

Matlab interface setting installation

The first operation to set the MEX-file is to compile it. This is done using the script mymex (just type ./mymex
from the matlab directory).

Using frextract:

The frextract function could be called with the following arguments:

Input arguments:
1. file name(s). This could be a single file, a list of file separeted by space or a frame file list (ffl)
1. ADC or PROCdata name (do not add extra space around the name)
1. (optional) file index of the first frame used (default = first frame in the file)
1. (optional) number of frame (default = 1 frames)

Returned Matlab data:
1. ADC or PROC data (time series)
1. (optional) x axis values relative to the first data point. This is usual time but it is frequency in the case of a

frequency serie.
1. (optional) frequency values in the case of time series (double) (usefull for FFT's)
1. (optional) GPS starting time (in second.nanosec)
1. (optional) starting time as a string
1. (optional) ADC or PROC comment as a string
1. (optional) ADC or PROC unit as a string
1. (optional) additional information: it is a 9 words vector which content the variables: crate #, channel #, nBits,

bias, slope, sampleRate, timeOffset(S.N), fShift, overRange (or the equivalent for proc data). All these values
are stored as double

Using frgetvect:

The frgetvect function perform a random access in the frame file using the table of content (which of course need to be
present). This function is much faster than frextract when working with large file. This function could be called with the
following arguments:

Input arguments:
)

1. channel name (it could be an ADC, SIM or PROC channel)
1. (optional) GPS starting time for the requested vector (default = first frame in the file)
1. (optional) vector length in second (default = 1 second)
1. (optional) debug level (default = 0 = no output).

Returned Matlab data:
1. ADC or SIM or PROC data stored as double. Usually this is a time series but it could be a frequency serie in

the case of PROC data
1. (optional) x axis values relative to the first data point. This is usual time but it is frequency in the case of a

31 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

frequency serie.
1. (optional) frequency values in the case of time series (double) (usefull for FFT's)
1. (optional) GPS starting time (in second.nanosec)
1. (optional) starting time as a string
1. (optional) vector unitX as a string
1. (optional) vector unitY as a string

Using other Frame tools with Matlab:

Do not forget also than you can run any Frame Utility program from Matlab by using the shell escape command ! For
instance:

! FrDump -i ../data/test.dat

will call the program FrDump with the argument ran.dat.

The ROOT interface

Introduction

ROOT is a powerful interactive environment developed at CERN (http://root.cern.ch). Among its various tools, It provide
a very nice interactive C/C++ interpreter and detailed histograms capability. In the root directory of the Frame Library
you will find a few scripts and macro to use the frames in the ROOT environment.

Frame library installation for ROOT

Assuming that you have already installed ROOT on your computer, you need first to build a special shared library. To do
that, just adapt the build script to your system. You need at least to change the path to the ROOT directory and you may
need to change some of the compilation flags... Once this is done, you need to update the PATH and
LD_LIBRARY_PATH to include the FrameLib binary directory (named by your system). Then if you start root from the
Fr root sub directory, it will execute the FrLogon.C which load everything you need.

Using the Frame Library in ROOT

Once ROOT is properly started, any Frame Library function is available as a ROOT command. Then 2 ROOT macro
have been provided to build histograms out of the FrAdcData and the frame vector (FrVect). Just look at the three macro
example to see what you can do. The FrVect vectors play a key role in these interactive analysis and more complex
programs have been developed to provide direct interface to FFT and signal processing. See the Frv package (see
http://wwwlapp.in2p3.fr/virgo/FrameL) and the Vega package (http://wwwlapp.in2p3.fr/virgo/vega). The test.dat file used
by the exampleAscii.C and exampleAdc.C macros could be generated by running the FrFull example.

ROOT macros availabe:

FrVP; This macros convert one or more vector to one histogram
 TH1F* FrVP(FrVect *vect, char *draw = NULL, int color = 1, double xStart = 0., double xEnd = 0.,
double scale = 1.) This macros plot a single vector. Draw could take the value NULL to just build the
histogram, "DRAW" to build and draw it or "SAME" to build and draw it on top of an existing histogram.
 TH1F* FrVP(FrVect *vect1, FrVect *vect2 = NULL, double scale2 = 1., FrVect *vect3 = NULL,
double scale3 = 1., FrVect *vect4 = NULL, double scale4 = 1.) This macros plot up to four vectors. The
vectors 2 to 4 could be rescaled.

FrAP: To plot and Adc channel:
TH1F* FrAP(FrAdcData *myadc, char *draw = NULL) This macro plot an ADC channel.

FrCP: To plot a channel giving a file name and channel name(s):
TH1F* FrCP(char *fileName, double tStart = 0., double len = 2., char *channel1, char *channel2 =
NULL, double scale2 = 1., char *channel3 = NULL, double scale3 = 1., char *channel4 = NULL,
double scale4 = 1.)

32 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

 TH1F* FrCP(char *fileName, char *channel1, char *channel2 = NULL, double scale2 = 1., char
*channel3 = NULL, double scale3 = 1., char *channel4 = NULL, double scale4 = 1.)

The Octave interface

Introduction

GNU Octave www.octave.org is a high-level language, primarily intended for numerical computations. The interface
frame to octave contains two routines [loadadc, loadproc] for loading ADC and PROC data from a given frame file into
the Octave context. It has great similarities with the interface to Matlab previously described.

How it works?

Here is a description of what input variables should be provided to the loading interface and what output variables are
available to the user:

LOADADC: Download an ADC signal in the Octave workspace from a given frame file.
Usage: [adc,fs,valid,t0,timegps,unit,slope,bias] = loadadc (fileName,[adcName[,nFrames[,first]]])
Input parameters:

fileName: the name of the frame file
adcName: [opt] the name of the ADC signal to be extr. [if missing: send a dump of fileName]
nFrames: [opt] the number of frames to be extr. [if missing: send a dump of adcName frames]
first: [opt] number of the first frame to be extr. [default=first frame avail.]

Output parameters:

adc: the ADC signal
fs: the sampling frequency
valid: an index specifying whether the data are OK or not
t0: the GPS time associated to the first bin in the first extracted frame
timegps: [string] same thing but human readable format
unit: physical units of the signal
slope: slope coef. used to calibrate the signal X
bias: bias coef. used to calibrate the signal X

LOADPROC: Download an PROC signal in the Octave workspace from a given frame file.
Usage: [proc,fs,t0,timegps] = loadproc (fileName,[procName[,nFrames[,first]]])
Input parameters:

fileName: the name of the frame file
procName: [opt] the name of the PROC signal to be extr. [if missing: send a dump of fileName]
nFrames: [opt] the number of frames to be extr. [if missing: send a dump of procName frames]
first: [opt] number of the first frame to be extr. [default=first frame avail.]

Output parameters:

proc: the PROC signal
fs: the sampling frequency
t0: the GPS time associated to the first bin in the first extracted frame
timegps: [string] same thing but human readable format

33 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

SAVEADC: Write an ADC signal from the Octave workspace to a given frame file.
Usage: status=saveadc(fileName,signalName,data[,fs,[t0]])
Input parameters:

fileName: the name of the output frame file
signalName: name of the ADC signal to be written
data: input data (column vector of double)
fs: sampling frequency
t0: GPS time associated to the first bin of the first output frame

Output parameters:

status: report about the writing operation.

SAVEPROC: Write an PROC signal from the Octave workspace to a given frame file.
Usage: status=saveproc(fileName,signalName,data[,fs,[t0]])
Input parameters:

fileName: the name of the output frame file
signalName: name of the PROC signal to be written
data: input data (column vector of double)
fs: sampling frequency
t0: GPS time associated to the first bin of the first output frame

Output parameters:

status: report about the writing operation.

Note that this description is also available online, by typing ``help loadadc'' or ``help loadproc'' at the octave prompt.

Test and getting started

A test script plotframe.m is also part of the package. It uses the test framefile [test.dat] in the directory /data of the Frame
Lib distribution. The script produces a plot of the first 1024 data points of the ADC signal 'Adc0', computes and plots its
spectrum. This may be used as a start for learning how the interface works.

For any question about the Octave interface, please contact Eric Chassande-Mottin (ecm at obs-nice.fr)

Library Changes

From Version 2.37 to Version 3.10

Several structures, structure's element names and vector types have changed. The new names follow the new Specification document. Some

function names have been changed according these new names. The function names changes are:
- FrSmsxxx -> FrSerXXX
- FrRecXXX->FrProcXXX
- FrameDumpBuf -> FrameDumpToBuf

In addition, the ASCII option for output file has been suppressed. The corresponding argument in the function FrOFileNew is now used for the

frame data compression. Several static data with the same name but different time range can now be present in the same frame.

 Files written with version 2.37 can be read by version 3.10.

34 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

From Version 3.10 to Version 3.20

Add vector compression and fix bugs in FrVectCopy. Old files (from 2.3x) could still be read with the version 3.20.

From Version 3.20 to Version 3.30

Change Utime to Gtime according to the specification LIGO-T970130-05.
Add the variable Uleaps in the FrameH structure.
Add the handling of FrSummary and FrTrigData structures.
Fix bugs when writting compressed frames.

From Version 3.30 to Version 3.40

Add the variable detector in the FrStatData structure.
Change one parameter in the FrStatDataAdd function call (replace root by detector).
Compute the number of bytes for the EndOfFile structure.
Fix bugs in GPS time versus UTC time.
Fix bugs in Floating point conversion with compression.
Put I/O call in a separate file (there is one more file to compile so check your script).
Improve the utility programs.

 All files written with version 2.37 and higher can be read by version 3.40.

From Version 3.40 to Version 3.42

Fix bug in FrFileIClose: the Static Data structures were not free.
Improve the logic for static data update(data with timeEnd = 0 where not properly handled).

 All files written with version 2.37 and higher can be read by version 3.42.

From Version 3.42 to Version 3.50

 Support multiple input file in FrFileINew.
Remove some warning when reading old files
Suppress the need to call FrLibIni
Add the functions: FrameCopy, FrameHCopy, FrAdcDataCopy, FrameSelectAdc.
Add a Matlab section.
Update the examples

All files written with version 2.37 and higher can be read by version 3.50.

From Version 3.50 to Version 3.60 (March 22, 1998)

Add the functions: FrDataFind.
Fix the ADC sampleRate in exampleOnline.c and exampleMultiW.c
Update the FrCopy FrDump and Frexpand utilities.
Fix the bug in the directory creation in the makecc script.
Fix bug in FrReadVQ (wrong malloc size).
Add in situs framewrite

 All files written with version 2.37 and higher can be read by version 3.60.

From Version 3.60 to Version 3.70 (Sep 16, 1998)

Add the functions:
FrameWriteToBuf put a frame in one single buffer

35 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

FrameReadToBuf read a frame from a buffer
FrLibVersion return the FrameLib version number

Fix bugs in:
FrameCopy : (uninitialized variable which in some case return the previous frame)
FrAdcDataNew : the 'adc' with floating point values where not properly created
FrVectWrite: write next vector if available
FrFile->Header fix the size from 32 to 40
FrReadLong and FrReadVL : logic for bytes swapping in the Pentium case.
FrameRead : in the case of reading unknown record
GPS time convention and associated print statement
FrSENew : the number of structure element of the dictionary was sometime wrong.
One variable name (localTime) in FrameH dictionary.

Suppress the additional arguments in throvements in the case of Linux or DEC Alpha. See the FrIO.c file for details.
Add a protection in FrVectNew if the function is called with strange arguments
Add includes (unistd.h) in FrIO.h
Change YES and NO global variables by FR_YES and FR_NO (internal variables)
Add a parameters in the example FrDumpFile
Print dictionary warning only if debugLevel > 1.
Specify O_BINARY type for file open (needed for Windows NT)
FrVectCompress: put a protection on gzipLevel (if set to 0 on Sun, the program crashed).
Fix the format of a few print statements
Update all the examples to use the latest functions and remove some unused variables

 All files written with version 2.37 and higher can be read by version 3.70.

From Version 3.70 to Version 3.71 (October 6, 1998)

Code cleaning in the FrCopy and FrDump utilities.
Fix a bug in FrAdcDataNew when creating ADC?s with floating point values.
Add a protection for bad arguments in FrAdcDataFind and FrSerDataFind in

 All files written with version 2.37 and higher can be read by version 3.71.

From Version 3.71 to Version 3.72 (October 9, 1998)

Use 315964811 to convert UTC to GPS time for old files instead of 315964810.

 All files written with version 2.37 and higher can be read by version 3.72.

From Version 3.72 to Version 3.73 (November 11, 1998)

FrVectCompress; add new compression scheme (zeros suppress for short) and try to optimize the code
Add FrVectZComp and FrVectZExpand
FrVectDiff: return the differentiate result (the original input is now unchanged)
FrVectExpand: cleanup the logic
FrVectWrite: To not copy the vector before compressing it
FrVectDump: printf update

 All files written with version 2.37 and higher can be read by version 3.73.

From Version 3.73 to Version 3.74 (April 2, 1999)

FrAdcDataNew: Put adc name in the vector
FrameDumpToBuf: Protect the case when the temporary file open failed.
FrameWriteToBuf fix a bug to get the size including the EndOfFile record

36 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

FrDicFree: Reset the file->SH pointer in order to be able to call directly FrDicFree
FrFileINew and FrFileONew: Add protection for missing file name
FrSimDataNew: Put data name in the vector and allow more type of storage
FrSerDataGet fix bug to avoid name confusion with longer name
FrProcDataNew: Change calling sequence to be compatible with Adc and Sim data.
In FrVectCompress: compress only if stay in initial size and return the compress vector, the original is unchanged
FrVectExpand: Trap error for unknown compression flag
FrVectNew: do not fill the vector name
FrVectNewTS: New function
FrVectNew1D: New function
FrVectWrite: do not compress if compress flag = -1
FrIO.h: remove include to unistd.h
exampleDumpFile.c: Add protection for missing file name
frextarct.c: fix memory leaks, api description and printf statement for GPS starting time.
Update the utilities FrDUmp.c FrCopy.c and FrExpand.c
Clean up the FrameL.h to be compatible with ROOT/Vega
Script: use only gcc and add the option -fPIC

 All files written with version 2.37 and higher can be read by version 3.74.

From Version 3.73 to Version 3.75 (April 29, 1999)

FrFileONew: restore the possibility to have fileName == NULL
FrDicDump: fix a bug in the loop (this function is used only for debug)

 All files written with version 2.37 and higher can be read by version 3.75.

From Version 3.75 to Version 3.80 (May 17, 1999)

Change the FrIO.c code to support the standard C FILE.
Add random frame access. This is an option which is under evaluation.

 All files written with version 2.37 and higher can be read by version 3.80.

From Version 3.80 to Version 3.81 (June 4, 1999)

Fix a bug in random frame access for multiple file open and close
FrFileINew and FrFileONew: Removed protection for missing file name (added in 3.74)

 All files written with version 2.37 and higher can be read by version 3.81.

From Version 3.81 to Version 3.82 (June 9, 1999)

Add FrFileMarkFree to fix a memory leak when using the file marks.
All files written with version 2.37 and higher can be read by version 3.82.

From Version 3.82 to Version 3.83 (June 15, 1999)

Move the FrIO structure definition from FrIO.c to FrIO.h.

 All files written with version 2.37 and higher can be read by version 3.83.

From Version 3.83 to Version 3.84 (August 23, 1999)

FrVectWrite: Fix Memory leak when using compress.
FrVectZComp: Add protection for buffer overflow

37 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

 All files written with version 2.37 and higher can be read by version 3r84.

From Version 3.84 to Version 3.85 (September 11, 1999)

FrTrigDataWrite and FrSummaryWrite: Fix bug to write link list
struct FrVect: Add temporary variables (startX, frame, ?)
Add define for GPS data and fix bug in time setting in the examples

 All files written with version 2.37 and higher can be read by version 3r85.

From Version 3.85 to Version 4.00 (May 1, 2000)

Change from frame format from version B to C. This generate many changes in the code. File written with FrameLib version 3.40 and above can

still be read.
Simplify the FrFileINew end FrFileONew API: the user do not need any more to pas a buffer. If he wants to directly in agreement with the new

frame spec.
Suppress the direct write in memory functionality
Add miscellaneous feature, protections and fix various bugs:
Add Gtime in FrVect
Add the possibility to specify the history message produce at write time
FrProcDataFind, SImDataFind: test if name == NULL
FrAdcDataNew : remove the vect->name
Fix bugs in compression flags logic.
FrTrigDataWrite and FrSummaryWrite: Fix bug to write link list
Reduce the use of long

 All files written with version 3.40 and higher can be read with version 4.00

From Version 4.00 to Version 4.01 (May 15, 2000)

Fix format of FrameL.h to be Root/Vega compatible.
Add the functions: FrAdcDataNewF, FrAdcDataDecimate, FrameTagAdc, FrameUntagAdc, FrameMerge
Remove the function FrameSelectAdc.
Fix bug in FrameDumpToBuf.
Change logic for static Data reading in order to keep them after a file close
Fix a bug to be able to read file with format 4 after reading file with format 3

 All files written with version 3.40 and higher can be read with version 4.01

From Version 4.01 to Version 4.02 (May 21, 2000)

Fix various memory leaks.
Add the functions: FrameTagSer, FrameUntagSer, FrVectStat

 All files written with version 3.40 and higher can be read with version 4.02

From Version 4.02 to Version 4.03 (June 2, 2000)

Fix two bugs for FrStatData which showed up for static data copy and multiple write in file.

All files written with version 3.40 and higher can be read with version 4.02

From Version 4.03 to Version 4.10 (October 11, 2000)

Random access: Add a random access for a vector over several frames: FrameGetV. Add the function FrProcDataReadT, FrSerDataReadT,

38 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

FrSimDataReadT. Add random access by run/frame number: function FrTOCFrameFindN. Change FrameReadT to work if not TOC available,
Fix several bugs in random access. Add FrFileITStart(FrFile *iFile) FrFileITEnd (FrFile *iFile) functions. Add read function to frame Header

FrameHReadN and FrameHReadT.
improve debug for frame reading
Define types for structures and reorganize FrameL.h
Tag: Add Tag/untag function for Proc,Sim,Trig and Summary data. Add the function FrameTag, AntiTag is done by a word starting by -. Improve

the wild cards for tag. Change the internal logic for Tag/Untag/find using a new structure (FrBasic). Protect Tag function for tag == NULL
Add a function FrameNew (frameH with time + detectProc structures)
Add a function FrFileONewH and FrFileONewFdH to define the program name in the history record.
Add direct vector access: FrAdcDataGetV, FrProcDataGetV, FrSimDataGetV,
Add a function FrVectGetV to access and convert a vector element.
Table: Add FrTableExpand and the function FrTableGetCol. Fix a memory leak in FrTableFree
To speed up frame creation, read and write: do not set to zero the vectors element when creating a new one.
Update the examples and utilities to use the random access tools.
FrMerge now do a full frame merge and not only the raw data.
Fix bug in static data write (if on static data was changed it was not written on tape)
Fix bugs for the FR_VECT_STRING vectors in several places (FrVectFree and New, Read, Write, Copy)
Fix a memory leak in FrVectCompData
Fix a bug in FrTrigDataNew: Copy timeBefore/timeAfter.
Fix a bug in FrAdcDataNew to store nBit as an unsigned int.
Fix the matlab interface.
Fix a mismatch with the Frame spec for long: Write long as 8 bytes even on a 4 bytes computer (fix bug in ReadLong)

All files written with version 3.40 and higher can be read with version 4.10

From Version 4.10 to Version 4.11 (October 23, 2000)

Change the way to write NULL string: now we write at least the '\0' character.
Output files (oFile) and Table Of Content: add on option to not write the TOC for the time series (ADC, sim, ...).
FrCopy.c : Add program name in history record, Add the option noTOCts to not write the TOC for the time series.
Fix a bug in the zero supress compression algorithm in the case of consecutive values = -32768. (Update the test program exampleCompress.c)
Fix bug in FrVectDump for vector of string with the string = NULL:
Remove extra printf in FrLibVersion

All files written with version 3.40 and higher can be read with version 4.11

From Version 4.11 to Version 4.20 (December 7, 2000)

Add buffer in FrIO. This speed up the disk read by a factor 2 to 3.
Add new functions for random access: FrTrigDataReadT, FrSimEventReadT, FrameReadTAdc and check that all random access function skip

FrSH and FrSE records.
Add a new function FrameReadRecycle to speed up read of frame with lot of summary information.
Update the following test program to test these new functions: exampleMark.c, exampleDumpFile.c
Upgrade FrCopy to use the new random access tools and to allow it to uncompress already compressed files.
Add decimation for float in FrAdcDataDecimate .
Upgrade FrAdcDataReadT to work with wild card in the Adc name.
Reorganize FrVectCompData to fix some bugs in the flags selection. (compression 5 was crashing for 4 bytes integers, could not uncompress a

file already compressed).
Add a test version of lossy compression for float.
fix memory leak in FrSimEventXXX functions.
fix a bug in FrSpeed in the speed computation.
fix a bug in FrProcDataGetV.
Add an Fr prefix to the zlib includes
Fix some printf.

39 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

All files written with version 3.40 and higher can be read with version 4.20

From Version 4.20 to Version 4.21 (December 8, 2000)

Fix a bug in FrAdcDataReadT (the wrong adc was read)
Did some changes in the float to in compression.

All files written with version 3.40 and higher can be read with version 4.21

From Version 4.21 to Version 4.22 (December 12, 2000)

Fix a bug in FrTOCFrameFindT which prevent to extract frame for files with only one frame.
Add the convention for random access that if the requested time is 0, you get the first frame in the file.

All files written with version 3.40 and higher can be read with version 4.22

From Version 4.22 to Version 4.23 (Jan 16, 2001)

Fix bug in FrFileIGetV to get the proper frame is TStart = 0.
Fix a printf bug in FrLibVersion.
Fix memory leak when using taewrite of the pointer relocation logic to speed up read/write for frames with many channels.
Sort by alphabetic order the channels in the table of content.
Fix a memory leak which was observed when using random access with table of content on many files.
Add scripts for autoconf GNU tools (thanks to Duncan Brown).

All files written with version 3.40 and higher can be read with version 4.30

From Version 4.30 to Version 4.31 (Feb. 27, 2001)

Fix bugs in the handling of static data. The static data were not properly read/write since version 4.30.
Update the example exampleSpeed.c to compute more things.
Update the root macro to add more option for the plots of one vector

All files written with version 3.40 and higher can be read with version 4.31

From Version 4.31 to Version 4.40 (July 11, 2001)

Thanks to Isidoro Ferrante, Martin Hewitson, Julien Ramonet, Andrei Sazonov, Peter Shawhan, Didier Verkindt and Andrea Vicere for finding and

reporting bugs.

Major rewrite of random access functions (most of them). Some new random access function added. Now random access is supported when using
multiple files with usually wild card as well. The random access work properly now in case of missing frames. The definition of the search time
window for FrTrigDataReadT as been update to be consistent with the other random access function. Fix a weakness in the random access. The
GPS time is defined as double and sometime if we use the integer starting time converted to double we got the previous frame due to round off

error.
Add Frame File List option for the FrFileIOpen for efficient random access in multiple files.
Add one more parameter to the functions FrTrigDataFind, FrSerDataFind, FrSimEventFind to be able to access structure with the same name in

the same frame. Warning: code using these functions need to add this extra parameter which should be set to NULL to work as previously.
Change the function FrAdcDataFree to free now the full linked list
Improving some dump, debug and printout statements, especially in FrAdcDataDump, FrVectDump (with large debug level, you could have a full
vector dump), and FrVectStat (add management of doubles) and a wrong comment about compression in FrCopy. Improve the table of content
dump: add the number of frames containing the channel and allow the use of tag to control the channel list. To do that, the function to tag data

have been reorganized.
Add a new FrVect type: FR_VECT_H8 and FR_VECT_H16 for FFTW half complex vectors
Add the type FR_VECT_8C as specify in the frame spec. The miss typed FR_VECT_C8 type is still valid.
Fix a bug in FrTOCtsMark: The Adc group ID and channel ID were swapped. This means that all files written with previous version of the library

have this information swap in the table of content. If the file is copy, the table of content is rebuild with the right information.
In case of unknown compression flag, free the working space in FrVectExpand to avoid memory leak.

40 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

Add the frame reshaping function (FrameReshapeXXX) to change the frame length.
Add more feature to FrCopy like decimation and change of the frame length.
Update FrAdcDataDecimate and FrVectIsValid to handle double precision floating points and to fix a bug in the update of nx[0].
Add a test when writing data to check for duplicate channels.
Fix a bug in FrFileORealloc (the memory allocation failure was not properly trapped).
Fix bug in TOC writing on PC. The TOC of files writen on PC with version < v4r40 are not usable. To regenerate the TOC, just copy the file with

the latest FrCopy utility.
Add zero suppress compression options for 4 bytes integers and floating points numbers
Add the prefix "Fr" to all gzip functions to avoid name conflicts.
Add the function FrVectDecimate and FrStrUTC
Add the computation of checksum when writing file.
Update some example programs.
Update the compilation script to work on cygnus also. The makecc script has been renamed makegcc to be more consistent and do not compile

anymore the example. To compile them use the script maketest.

All files written with version 3.40 and higher can be read with version 4.40

From Version 4.40 to Version 4.41 (July 31, 2001)

Thanks to Sam Finn, Frederique Marion and Peter Shawhan for finding and reporting problems and bugs.

Fix the checksum computation on SGI (FrChkSum function).
Fix a bug in FrCopy when using input list from standard input (STDINLIST option)
Fix FrADCDataReadT, FrProcDataReadT and FrSimDataReadT to avoid memory leak if there is no frame for the requested time.
Fix bug in FrameReshapeNew to properly handle the case with non zero position.
FrFileIGetVType: increase round off margin to deal with vector with a slight offset compared to the frame start time.
Minor update of the TOC dump
Initialize to zero any new vector, except the one created by FrAdcDataNew. (This initialization was suppress at version v4r10).
Add the function FrVectMinMax.

All files written with version 3.40 and higher can be read with version 4.41

From Version 4.41 to Version 4.42 (Sept 19, 2001)

Remove the to the FrCHkSum function (declare the first argument of the FrChkSum function as char * instead of signed char *) to be able to work

with the current version of root in order to bypass a bug in CINT.
Change FrVectIsValid to flag sub normal floating point numbers as invalid floating points.

All files written with version 3.40 and higher can be read with version 4.42

From Version 4.42 to Version 4.43 (Oct 15, 2001)

Fix the FrVectIsValid function to not mark zero floating point value as invalid floting point.
Fix a Bug in FrTOCSetPos to be able to do random access on file larger than 2 GBytes.

All files written with version 3.40 and higher can be read with version 4.43

 From Version 4.43 to Version 4.44 (Nov 14, 2001)

Fix a Bug in the zero suppress compression algorithm for floating point (compression flag = 8).

All files written with version 3.40 and higher can be read with version 4.44

From Version 4.44 to Version 4.50 (March 13, 2002)

Thanks to Damir Buskulic, Eric Chassande-Mottin, Ed Daw, Martin Hewitson, Frederique Marion Alain Masserot, Peter Shawhan and Didier Verkindt

41 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

for suggestions, finding and reporting problems and bugs.

FrVectIsValid: rewrite the code to fix a bug when checking double and to not trig on -0.
FrVectDecimate: update the value of out->size = in->size/nGroup.
FrVectStat: minor changes in the output format (replace 4 by %5).
FrVectDump: for complex numbers: add protection for invalid complex number and provide full dump. Dump also GPS time if available.
FrMerge: if no info timing for one frame, use the values from the other one.
Fix a memory leak when using random access on multiples files (avoid the double reading of FrSH structures).
FrTagMatch: Fix a bug in the case of 'multiples' antitag. For instance if the tag was "-adc1 -adc2", only "-adc1" was taken into account.
Add a protection when performing random acces on file with channels missing for a few frames.
FrChkSum: Select char or signed char according to the compiler definition.
FrCopy: Uncompress data if the option decimate is used. Check that the option -a is requested after the input file declaration.
FrVectRead/Write fix a bug to fullfil the frame spec in the case of uncompressed vector on littleendian machine. Warning: due to this change,

uncompress data produced on littleendian machines will be unreadable with previous library version.
FrFileINext and FrDum: add a protection on invalid file when reading multiples files.
Add function FrMsgDump, FrameReadTSer, FrameReadTSim, FrameReadTProc, FrameReadTChnl.
Add an Octavia directory (code from Eric Chassande-Mottin).
Fix names in the gnu install scripts.

All files written with version 3.40 and higher can be read with version 4.50

From Version 4.50 to Version 4.51 (March 18, 2002)

Thanks to Andrei Sazonov, Peter Shawhan and Didier Verkindt for suggestions, finding and reporting problems and bugs.

FrVectWrite fix a bug to fullfil the frame spec in the case of uncompressed vector on littleendian machine. Warning: due to this change,

uncompress data produced on littleendian machines will be unreadable with previous library version.
Add the function FrFileIChannelList.
For FFL, paths to files from the list are now interpreted as relative to the path of the list file, not relative to the current directory.

From Version 4.51 to Version 4.52 (March 20, 2002)

FrVectDecimate: Free the unused space at the end
Fix a format in FrFileIChannelList.

All files written with version 3.40 and higher can be read with version 4.52

From Version 4.52 to Version 4.53 (May 2, 2002)

Thanks to Damir Buskulic, Jean-Marie Teuler and Didier Verkindt for suggestions, finding and reporting problems and bugs.

FrReshapeAdd: Do not add images, just move them
FrVectIsValid: Fix a bug introduced since v4r50 (in case of error, it returns now the index of the first invalid vector element)
FrIO.h: add a protection for multiple includes.
Add channel list (FrCList) functions for AdcData and SerData
FrAdcDataDecimate: use a double for local sum (to avoid problem foir large float values)
FrCopy: Use FrameReadTChannel instead of FrameReadTAdc
Add the functions FrTOCFrameFindNext and FrTOCFrameFindNextT
Fix a memory leak in FrExtract

All files written with version 3.40 and higher can be read with version 4.53

From Version 4.53 to Version 5.00 (Augst 12, 2002)

Many changes have been made, most of them to support the frame format version 5.

42 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

A few function calls have been changed, basically to add extra parameters.

FrSerDataNew: add the sampleRate parameter.
Rename FrTOCFrameFindNextT to FrFileITNextFrame.
Rename FrTrigData to FrEvent.
Change the calling sequence of FrEventNew and FrSimEventNew (GtimeN,S have been replace by a double and
event parameters could be directly added).
FrEventReadT and FrSimEventReadT : add two extra parameters to select event on the amplitude if needed.
Change the return argument for FrHistoryFree and FrStatDataFree to be like the other Free function.
FrFileIGetV return now a vector with the requested boundaries.

New functions have been added, especially to provide Table Of Content data access:

FrFileIGetXXXNames and GetXXXInfo provide information from the TOC.
FrFiltITFirstEvt and FrFileITLastEvt provide the time of the first and last event in the file.
FrMsgFind find a FrMsg in a frame.
FrVectNewL let you create vector with a long long argument type for nData.
FrameGetLocalTime return the localTime offset for on Adc channel.
FrProcDataAddHistory let you add history to an FrProcData channel.
FrVectZoomIn and FrVectZoomOut to change a vector boundaries

New feature have been added:

When doing random access check that we read the right vector.
The name of the history record is now the frame name.
Split the time boundary for frame and for events in the Frame File List.
Add file statistic in FrDump (the debug flag level have slightly changed).
Change FrIO.h for HPSS include when needed.
FrCopy do not change the compression type by default now.
FrAdcDataDecimate: realloc space at the end to free unused space.
FrFileIOpen: add a protection for multiple calls on a file already closed
FrFileIChannelList: print also the min and max value for each channel.
upgrade FrCheck to check sequentiel reads and check individual frame checksums.

Several bugs have been fixed:

The type and users vector in FrameH are now read, written to file and free when they are used.
Fix a bug in FrVectDecimate (wrong realloc).
In case of random access with some channels that are not in all the frames, the following channels were not read.
FrPutLong was not properly working on some computers.
FrFileINew: fix a bug when the ffl file was not present.
FrCopy: when the requested starting time was after the end on file, all the file were copied.
Complete the zlib prefix list in Frzconf.h.
Add a protection when doing frameReshape on compressed frames.

Your compiler should flag all the change you need to do on your software to convert it to version 5. The most likely
changes will to replace FrTrigData by FrEvent, update the new and find functions, remove the use of localTime from the
frame header and fix some printf when Files written with version 3.40 and higher can be read with version 5.00

From Version 5.00 to Version 6.00 (Augst 14, 2002)

Since some LIGO software (the version of FrameCPpec to version 6. Files written with FrameLib version 3.40 and higher
can be read with version 5.00. The ‘version 5’ frames produced by FrameCPP could also be read by this new version of
FrameLib, but only in a sequential mode (no random access using the TOC). The changes made between v5.00 and v6.00

43 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

are due to this modification.

From Version 6.00 to Version 6.01 (September 9, 2002)

Thanks to Damir Buskulic, Eric Chassande-Mottin, and Didier Verkindt for suggestions, finding and reporting problems
and bugs.

Fix a bug which prevent to performed random access read with FrEvent for version4 frames.
FrFileIChannelList: fix a bug in the min/max values.
Add functions : FrameRemoveUntaggedData and FrEventAddParam
Describes Virgo dataValid values in FrAdcDataDump
FrameReshape: protect it when using tagged frames and set dataValid flag for ADC if part of the ADC is missing
Update OCTAVE interface:

Bug fix in loadadc/loadproc
New functions saveadc/saveproc
Update Makefile

Most files written with version 3.40 and higher can be read with version 6.01

From Version 6.01 to Version 6.02 (October 22, 2002)

Thanks to Damir Buskulic, Eric Chassande-Mottin, Frederique Marion and Soumya Mohanty for suggestions, finding and
reporting problems and bugs.

Add a protection agains NULL vector in FrVectCompress and FrVectExpandF
Change FrameH->run from unsigned int to signed int.
FrVectCompData: fix a bug for gzip compression: the output spce was slightly to short and in a very few cases, this
was creating problems.
Fix dictionnary for FrProcData->history, and for arrays in FrTOC (INT_4U * changed to *INT_4U for instance).
Commented out the test compression method 7 (not part of the spec).
Put the write nBytes value when writting vectors of string.
FrEventNew and FrSimEventNew: add a protection for the case nParam=0 which generate some problems on
Alpha.
Increment FrSH and FrSE instance numbers.
Add the function FrEventGetParam, FrSimEventGetParam and FrSimEventAddParam
For the FrEventReadT function (and similar random function) read the full linked list of associated vector instead of
just the first one.
Set GTimeS for the vector assiocated to an event when performing a random access using FrEventReadT (and
similar functions).
Update the Matlab interface frextract to work also with FrProcData
Update the data test files (and the exampleFull.c program to produce more channels)
Remove the FrProcData->sampleRate variable.

Most files written with version 3.40 and higher can be read with version 6.02

From Version 6.02 to Version 6.03 (December 20, 2002)

Thanks to Damir Buskulic, Frederique Marion, Bernd Machenschalk, Jean-Marie Teuler, Gabriele Vedovato and Didier
Verkindt for suggestions, finding and reporting problems and bugs.

Add paramaters handling functions for FrProcData (FrProcDataAddParam,...)
Fix a bug in FrProcDataRead: the GTimeN field was not properly used when computing the GPS time.
FrVectMinMax: add a protection against invalid floating point numbers

44 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

Read unsigned short instead of signed short for the length of 'char'. It provides the full length for 'char' and prevents
segmentation fault when reading unvalid frames. This is transparent for regular frames.
Add various consitency checks to protect against corrupted files when reading them. This allows to recovert some
frame file version 4 with when doing random access on some missing channel.
Fix a bug in FrFileIGetAdcNames to prevent to read the TOC for most of the files and when reading data randomly
FrCopy: fix a bug in a malloc which was generating crashes on Linux
Minor change in FrVectDump to avoid the access of missing vector element for short vectors and to print the
position of the maximum value.
Include the licensing agreement.

Most files written with version 3.40 and higher can be read with version 6.03

From Version 6.03 to Version 6.04 (February 11, 2003)

Thanks to Elena Cuoco, Bernd Machenschalk, Frederique Marion, Szabolcs Marka, Ed Maros, Michele Punturo, Peter
Shawhan, Gabriele Vedovato, Didier Verkindt and John Whelan for suggestions, finding and reporting problems and
bugs.

Fix a bug introduced in v6r03 which prevent to access FrProcData in random access on some files.
Fix a bug in FrVectZCompI (failing to compress a vector if the 4 bytes vector includes the value -1)
Fix a bug in FrVectCompData: With the compression type 8, If a vector could not be differentiate, the vector type
was corrupted.
Fix a bug in the checksum computation on Sun since v6r00 (in FrEndOfFileWrite).
In FrChannelList: Do not compute min/max. This fix a memory leak.
FrVectDump: improve the full debug for a few rare cases (like 8U)
Minor debug messages fixes: (FrEndOfFileRead: do not print checksum if it is not computed, FrFileIOpen,...)
Protect FrIO.h against multiple includes
Add setting function for FrAdcData (FrAdcDataSetAux,DataValid, ...SetFShift, ...SetTOffset)
Add the function FrStatDataReadT (for random access) and FrStatDataDump.
Upgrade FrVectDecimate to provide a true decimation (without averaging) if nGroup < 0.
Upgrade the event handling:

FrEventNew and FrSimEventNew: add a warning for the multiple paramters type (they should be double).
Add the FrameAddEvent, FrEventCopy, FrEventReadData and FrEventReadTF functions and the equivalent
function for FrSimEvent.

Most files written with version 3.40 and higher can be read with version 6.04

From Version 6.04 to Version 6.05 (February 25, 2003)

Thanks to Bernd Machenschalk, Frederique Marion and Didier Verkindt for suggestions, finding and reporting problems
and bugs.

Fix a bug in FrameAddEvent (when adding a linked list of events, only the first one was added, the other were lost).
Fix a bug in FrChannelList: (in case of FrProcData, their was a segmentation fault).
Fix a bug in FrFileIGetV (for too large vectors, a failed malloc was not protected and was producing a segmentation
fault)

Most files written with version 3.40 and higher can be read with version 6.05

From Version 6.05 to Version 6.06 (March 17, 2003)

Thanks to Franco Carbognani, Frederique Marion, Ed Maros and Gabriele Vedovato for suggestions, finding and

45 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

reporting problems and bugs.

Change FrameAddEvent to add the events in direct order instead of reverse order in the linked list.
Make shure that bytes 18 to 25 of the file header are properly filed on all machines.
Fix a bug in FrDump (it was crashing on some platforms like Linux when more that one file was given as input
argument).
Small changes the build and environment scripts for root

Most files written with version 3.40 and higher can be read with version 6.06

From Version 6.06 to Version 6.07 (May 24, 2003)

Thanks to Bruce Allen, Fabrice Beauville, Frederique Marion, Gabriele Vedovato and Didier Verkindt for suggestions,
finding and reporting problems and bugs.

FrEventAdd: Fix a Bug in (crash when adding the first event).
FrameMerge: fix memory leak if the frame have the same detector structure.
FrAdcDataNewF: set the vector vertical axis to the units parameter.
Fix a bug in the wildcards: "Adc*" was not selecting the name "Adc". (FrTagMatch1 function).
Improve the file error messages (open/read/write) using the errno information.
FrDump, FrCopy and FrCHeck: send error messages to stderr instead of stdout.
FrCheck: change the convention of the returned value of FrCheck. The old returned value (number of frame)
was usually wrong because of the limitation of the exit function to 255.
Add the functions: FrLibGetVersion, FrFileOPutV, FrVectReadZoom.
Update the exampleEvent.c file for more checks.

Most files written with version 3.40 and higher can be read with version 6.07

From Version 6.07 to Version 6.08 (August 28, 2003)

Thanks to Bruce, Allen, Marie-Anne Bizouard, Jolien Creighton, Vladimir Dergachev, Sam Finn, Gianluca Maria Guidi,
Alain Masserot, Andre Merzky, Peter Shawhan, Andrea Vicere for suggestions, finding and reporting problems and bugs.

Bug fixes:

FrEventReadData: fix a bug (the data were not found).
FrameDumpToBuf: Full rewrite to fix a bug: the internal buffer size was not properly defined and the
function did not work for large dump.
Fix a bug in FrFileHeader: The header was not correct (bit 18 to 25) for file produced on Alpha
computer with version v6r06 and v6r07. This bug had no effect on data themself, but checksum error
have been improperly reported and the TOC may be corrupted for thoses files.
FrAdcDataDecimate: Fix a bug in memory reallocation at the end of the function.
FrTOCRead: add protection to trap more malloc failures.
FrFileINewFd: add the cleanup of allocated structure in case of error during file openning.
Fix a bug in the latitude, longitude and arm azimuth translation between frame version 4 to frame
version 6.
FrRead: change an unsigned long to a long to be able to read read errors.
FrSimEventReadData: improve it to avoid confusion when many simulated event are generated.

Add the functions:

FrVectReshapeAdd, FrVectReshapeNew, FrVectReshapeEnd
FrFileONewM

46 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

FrSimEventAdd: add the event at the end of the linked list instead of the beginning.
FrVectDump: dump hexadecimal values in the case of invalid floating points numbers
FrFileIGetVxxx: add error messages in case of read error
FrDump: add the option "-c -1" to leave the data compressed.
FrCheck: add the "-c" option.
FrCopy: add the "-max" option to split output files and handle large data sets
Add the makeMacOS script in the mgr directory. This script is needed to build the shared library on MacOS.
Matlab macros: add an extra parameters to control de debug level and fix the string returning the time for
time series.
Copy the data test file.
cmt/requirements file: change "UNAME" to "Fr_tag"
Add the Memwatch include (protected by #ifdef MEMWATCH)
Introduce the possibility to use FFTW malloc and free functions. Use the mgr/makefft script to build the
corresponding library.

Most files written with version 3.40 and higher can be read with version 6.08

From Version 6.08 to Version 6.09 (October 01, 2003)

Thanks to Marie-Anne Bizouard, Frederique Marion and Eric Chassande-Mottin for suggestions, finding and reporting
problems and bugs.

Bug fixes:

The wild card selection "tag*" was not selecting the name "tag".
FrCListBldAdc, FrCListBldSer: a bug which was producing crash on Linux when channel names
had too different length.
FrFileIGetFrameInfo: there was a segmentation fault if the information requested was not starting
at the file beginning.

Update octave/saveadc and saveproc to be compatible with octave-2.1.50.

Most files written with version 3.40 and higher can be read with version 6.09

From Version 6.09 to Version 6.10 (December 11, 2003)

Thanks to Frederique Marion, Alain Masserot, Andrea Vicere, Didier Verkindt for suggestions, finding and reporting
problems and bugs.

Bug fixes:

FrTagMatch: The selection of a tag and antitag (like "Pr*" and "-Pr_B5*") was order dependant. This is
no more the case.
FrVectMergeT: this was producing crash when doing an FrDump with multiples files with events.
FrTagNew: copy the tag string in the internal structure.
FrVectConcat: the frame reshaping in FrCopy was crashing if the frames were longer than one second.
Fix a memory leak in TOC reading when a random access was perfomered after a sequential read.
FrCopy: Fix a bug when using the reshaping option with frame havin a lenght different than one second.
 FrDump: Fix error message for missing frame with debug level 1. The quoted time was the end of the
missing segment instead of the begining.

Do not open the frame file when doing FrFileINew. The file open is only performed in the FrameRead. This was a
problem when opening an ffl having the first file of the list incorrect. (function touched: FrameRead, FrFileINew,
FrFileINewFd)
FrFileIChannelList: rename it to FrFileIGetChannelList and the second (up to now) unsed parameters is now used

47 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

to define the GPS time to get the list (usefull for ffl).
FrAdcDataNew: preset the "slope" parameter to 1. instead of 0.
Change the format of timeBefore and timeAfter for the FrEvent dump functions.
Move the FrVect definition from FrameL.h to FrVect.h
FrDump: Change de default debug level from 2 to 1
FrEventReadData and FrSimEventReadData: read the associated vectors ONLY for the first event if it is a linked
list.
Add the functions:

FrFileISetTime to set the file position
FrVectDecimateMin: to decimate a vector keeping the minimal values
FrVectDecimateMax : to decimate a vector keeping the maximal values
FrVectSetName: to set or reset the vector name
FrVectSetUnitX0: to set or reset the first dimension name
FrVectSetUnitX1: to set or reset the second dimension name
FrVectSetUnitY: to set or rest the 'y' dimension (bin content)
FrVectGetSize/FrAdcDataGetSize/FrameGetAdcSize: to get the memory used by a vector/ADC/frame.
FrVectSave/FrVectLoad function to save on file and reload a vector.
FrVectGetIndex, FrVectGetValueI, FrVectGetValueX

Most files written with version 3.40 and higher can be read with version 6.10

From Version 6.10 to Version 6.11 (January 20, 2004)

Thanks to Frederique Marion, Alain Masserot, Didier Verkindt for suggestions, finding and reporting problems and bugs.

Bug fixes:

FrameReadFromBuf: fix a bug introdcued in v6r10 (the function was returning NULL in all cases)
Fix the name of the FrVectSetUnitX function (was improperlly named FrVectSetUnitX0 in v6r10)

Add FrVectSave in FrameL.h
Add the functions:

FrEventAddVec: to add a vector to an event
FrEventAddVecF: to add a vector (cast to floats) to an event
FrVectCopyPartI, FrVectCopyPartX,
FrVectCopyTo, FrVectCopyToD, FrVectCopyToF, FrVectCopyToI, FrVectCopyToS
FrVectZoomInI: to zoom a vector using integer arguments (bin number instead of x value)

Most files written with version 3.40 and higher can be read with version 6.11

From Version 6.11 to Version 6.12 (March 03, 2004)

Thanks to Duncan Brown, Damir Buskulic, Frederique Marion, Peter Shawhan, Didier Verkindt for suggestions, finding
and reporting problems and bugs.

Bug fixes:

FrFileBreakName: reduce the size allocated to each file when using an ffl. (it was 2kBytes per file
instead of 100 bytes/files).
FrEventAddVect and FrEventAddVectF: multiples bugs; the wrong vector was used and startX was
corrupted.

Matlab frgetvect and frextract: add support for complex numbers

48 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

Add the functions:

FrEventFindVect, FrEventGetVectD, FrEventGetVectF
FrSimEventFindVect, FrSimEventGetVectD, FrSimEventGetVectF
FrSimEventAddVect, FrSimEventAddVectF

Add an option to convert hermitian vector to regular vector at write time.
Add a fix to return the localTime for Virgo channel with wrong names
Change the name of a few function from xxxGetV to xxxFindV to show that they return only a pointer to a vector
and not a fresh copy that the user has to remove after using it. The olde names will remain available in the library
(not in the .h file) for a few months for backward compatibility:

FrameGetV becomes FrameFindVect
FrAdcDataGetV becomes FrameFindAdcVect
FrProcDataGetV becomes FrameFindProcVect
FrSummaryGetV becomes FrameFindSumVect
FrStatDataGetV becomes FrameFindStatVect
FrSimDataGetV becomes FrameFindSimVect

Most files written with version 3.40 and higher can be read with version 6.12

From Version 6.12 to Version 6.13 (May 23, 2004)

Thanks to Stuart Anderson, Duncan Brown, Tom Kobialka, Alain Masserot, Joe Romano, Peter Shawhan, Patrick Sutton,
Daisuke Tatsumi, Didier Verkindt for suggestions, finding and reporting problems and bugs.

Bug fixes:

FrFileITNextFrame (the function was not jumping over missing frames between files)
FrDump: Add one more space between vector values (float and double) when doing a full ASCII dump.
Update the maketest script which was not working on RedHat 9 machine.
FrFileINewM: add protection when the output directory is not available.
FrVectMergeT: WHen frames were not in increasing GPS time, the function was doing to an infinit
loop (This was observer in FrDump for instance)

In the case of single file (not ffl) FrFileINew do again the file open (like up to v6r09).
Add the tag/untag feature for StaticData
Update the Matlab 'help'
Add the functions:

FrFileIGetVect, FrFileIGetVectF, FrFileIGetVectFN, FrFileIGetVectD, FrFileIGetVectDN to retrive from
file a vector already converted to Float or Double and Normalized (in the case of ADC's).
FrVectSetMissingValues to set the vector values in the case of missing frames for vectors returned by
FrFileIGetVect
FrVectExtend and FrVectResample to change the vector length.

Most files written with version 3.40 and higher can be read with version 6.13

From Version 6.13 to Version 6.14 (August 5, 2004)

Thanks to Stuart Anderson, Bruce Allen, Fabrice Beauville, Thierry Bouedo, Kipp Cannon, Martin Hewitson, Bernd
Machenschalk, Sam Finn for suggestions, finding and reporting problems and bugs.

Bug fixes in:

49 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

FrVectExtend: propagate time GPS time information (this was not done).
FrVectConcat: works now with frames of different length. Segement fault were observed when using
FrFileIGetVXXX functions with frames of different length in the same files or FFL.
FrDetectorMerge: to support merge of frames with static data attached to the same detector structure in
both frames.
FrVectReadNext: in random access, not all vectors attached to one FrAdc, FrProcData, FrSimData,
FrEvent, FrSimEventADC structures where properly read. Two read were usually needed.

FrEventReadData and FrSimEventReadData: work now with linked list of event as input.
Add the functions FrFileIGetSerNames. Now FrDump -d 1 returns also the list of serData
Change FrIOOpenR to be able to read file from the standard input (if the file name is "STDIN"). When input file
are not open with "rb" instead of just "r" to avoid some problems on Windows.
FrDump -d 2 print now the maximum frame size in a file.
Add the functions:

FrProcDataAttachVect, FrProcDataFindVect, FrameAddStatDat, FrameAddStatData, FrameAddStatVector,
FrStatDataAddVect, FrameGetStatVect, FrameFindStatData, FrDetectorFindStatData,
FrDetectorAddStatData, FrameFindDetector

Add the FrFilter.c anf .h files and update the compilation scripts.
Update the matlab frextract.c frgetvect.c functions.
Remove the fcntl.h include from all files and insert it only in FrIO.c (portability on Debian)

Most files written with version 3.40 and higher can be read with version 6.14

From Version 6.14 to Version 6.15 (September 10, 2004)

Thanks to Kipp Cannon, Eric Chassande-Mottin, Sam Finn for suggestions, finding and reporting problems and bugs.

Bug fixes in:

FrVectConcat: change the rounding procedure when computing the number of bin for a vector. The last
sampled were missing since v6r13 when using vector random access (FrFileIGetVXXX or frgetvect
functions).
Fix the octave interfaces.

Most files written with version 3.40 and higher can be read with version 6.15

50 sur 50 10/09/2004 19:49

Frame Librairy User?s Manuel file:///C|/Documents and Settings/mours/Bureau/FrDoc.html

