

Multiwaveband Observations of the TeV Blazar PKS 2155-304 with HESS, Fermi, RXTE and Swift

> David SANCHEZ on behalf of the Fermi LAT and H.E.S.S. collaborations.

> > LLR

21 janvier 2009

< ロト < 同ト < ヨト < ヨト

D.Sanchez Multiwaveband Observations of the TeV Blazar PKS 2155-304 with HESS, Fermi, RXTE and Swift

1 PKS 2155-304 , status and open questions

2 Results of the 12 days campaign in 2008

Correlations

D.Sanchez Multiwaveband Observations of the TeV Blazar PKS 2155-304 with HESS, Fermi, RXTE and Swift

イロン 不同と 不同と 不同と

- 3

- Located in the southern hemisphere (RA : 329.7,DEC : -30.2), z=0.117
- Radio source : PKS 2155-304 belong to the Parkes Catalog
- Detected by EGRET (3EG : 5.9σ)
- First VHE emission observed in 1999 with Durham Mk VI telescopes, not seen by CANGAROO until recently
- Very bright and variable source in VHE range (E>200 GeV)

イロト イポト イヨト イヨト

EGRET measurements : Third catalog

- F(100MeV)= $4 \cdot 10^{-9} \text{cm}^{-2} \text{ s}^{-1} \text{ MeV}^{-1}$
- $\Gamma=2.34\,\pm\,0.2$
- Hard state (Vestrand et al (1995)), 2 weeks of pointing mode, 5.8 σ
 - F(100 MeV) =1.8 · 10⁻⁹ cm⁻² s⁻¹ MeV⁻¹
 - $\Gamma=1.71\,\pm\,0.24$

LAT : detection in 1-2 day of NomSciOps observation (low state) For the first time, variability in GeV range can be characterised with a timescale of a day.

D.Sanchez Multiwaveband Observations of the TeV Blazar PKS 2155-304 with HESS, Fermi, RXTE and Swift

VHE range : the HESS high state flux is 50 times higher than the low state flux

High state, photon index = 3.53 \pm 0.05 (E>500GeV) Low state, photon index = 3.37 \pm 0.07

(Aharonian et al, An Exceptional VHE $\gamma\text{-ray}$ flare of PKS 2155-304)

- where is the spectral break?
- leptonic (ssc,Ec), hadronic model ?
- leptonic model : origin of the seed photons

FGST should discriminate between models, independently of the flux state.

D.Sanchez Multiwaveband Observations of the TeV Blazar PKS 2155-304 with HESS, Fermi, RXTE and Swift

First Fermi-HESS MWL campaign

4 instruments to cover the broad band spectrum 12 days of observation

First simultaneous observation in optical, X-ray, and HE γ -ray SED modeling with 1-zone, homogeneous SSC model, study of correlations between different wave-band.

D.Sanchez Multiwaveband Observations of the TeV Blazar PKS 2155-304 with HESS, Fermi, RXTE and Swift

Time average SSC model : "Straw man" model

Electrons producing X-ray do not produce VHE photons. HE and VHE photons are produced by electrons $\gamma_1 < \gamma < \gamma_2$

D.Sanchez Multiwaveband Observations of the TeV Blazar PKS 2155-304 with HESS, Fermi, RXTE and Swift

7/13

- 4 同 ト 4 ヨ ト 4 ヨ ト

LC of 12 days

- VHE, $F_{\rm var} = 23 \pm 3\%$
- $\bullet~$ HE, $F_{\rm var} < 20\%$
- \bullet X, $F_{\rm var}=35\pm0.05\%$
- Opt, $F_{\rm var}=8\pm0.5\%$

No spectral variability in VHE range ($\Delta\Gamma < 0.2)$ weak cooling regime

 F_{HE} : no variability but more variation of Γ_{HE} ($P_{\rm cst}=19\%$)

X-ray : softer when lower behaviour strong cooling regime

D.Sanchez Multiwaveband Observations of the TeV Blazar PKS 2155-304 with HESS, Fermi, RXTE and Swift

VHE flares

blue curves : 1 sigma contours for the 1.77 day power-law fit

green curves : 1 sigma contours for the 0.22 day fit

Time interval	Integral (100 MeV-300 GeV)	Index
0.22 day	1.90 ± 1.00 e-7	-0.97 ± 0.26
1.77 day	1.43 ± 0.52 e-7	-1.32 ± 0.16

Flux alone might not indicate an ongoing TeV flare

D.Sanchez Multiwaveband Observations of the TeV Blazar PKS 2155-304 with HESS, Fermi, RXTE and Swift

summary of correlations

- No correlation $F_X F_{VHE}$, $r = 0.12 \pm 0.10$
- Optical and VHE fluxes are correlated $r = 0.77 0.86 \pm 0.09$
- X-ray flux and HE index are correlated $r = -0.80 \pm 0.15$

< ロト < 同ト < ヨト < ヨト

D.Sanchez Multiwaveband Observations of the TeV Blazar PKS 2155-304 with HESS, Fermi, RXTE and Swift

Optical and VHE fluxes correlation : Is it real?

Possible bias :

- ATOM and HESS share the same site : atmospheric effects
- Systematic errors are not taken into account

D.Sanchez Multiwaveband Observations of the TeV Blazar PKS 2155-304 with HESS, Fermi, RXTE and Swift

$F_X - \Gamma_{HE}$ correlation

1-degree (p0) and 2-degree (p1) polynomial fit p0 probability = 19%p1 probability = 64% F_{test} : 8.73, probability 1.4%

D.Sanchez Multiwaveband Observations of the TeV Blazar PKS 2155-304 with HESS, Fermi, RXTE and Swift

Correlations

Conclusions

- SSC model described the time average SED.
- electrons that produce X-ray do not produce VHE (in this model) : no correlation not the same cooling regime

BUT :

- optical-VHE correlation, $\Delta\Gamma_{\textit{VHE}}$: optical seed photons drive VHE variability
- no optical-HE correlation
- correlation $F_X \Gamma_{HE}$

Those results challenge 1-zone SSC model : need complex multi-zone model

D.Sanchez Multiwaveband Observations of the TeV Blazar PKS 2155-304 with HESS, Fermi, RXTE and Swift

イロト イポト イヨト イヨト