A first look at the channel $H \rightarrow W^+W^- \rightarrow l^+ V_l l^- \overline{V}_l$

Chiara Rovelli Univ.Milano Bicocca -- LLR, E.Polytechnique

1

Outline

- Introduction of the channel
- different approaches
- event topologies and selections
- background studies
- very preliminary results at the fast simulation level

Past analyses demonstrated that this could be a very fast channel for the discovery of the SM Higgs in the intermediate mass region 130 GeV< $M_H < 2M_Z$ filling the gap of $\sigma * BR (H \rightarrow ZZ \rightarrow 41)$. It can be very useful also for lower mass (~ 120 GeV)

Possible approaches

In the past two different kinds of analysis have been performed:

- study of the general kinematics of the channel without any specific requirements on the Higgs production mechanism
- study of the vector boson fusion channel for the Higgs production to exploit its characteristic 2 jet signature

In both cases, because of the 2 ν , it is impossible to distinguish a peak in the invariant mass distribution \implies not easy counting channel \implies the precise knowledge of all possible backgrounds processes is fundamental

Vector Boson Fusion

Production cross section is 20% (~ 4pb) of the total σ for m_H=120GeV

The signal can be described as the scattering of q via t-channel W and Z exchange with the Higgs radiated off this weak bosons \implies the signal contains two forward quark jets in addition to $H \rightarrow WW \rightarrow 212\nu$ decay products.

Backgrounds: any process resulting in 2 jets, 2 charged leptons and missing energy (ttjj, WWjj,)

Vector Boson Fusion

Extra event tags :

* Two high P_{T} forward jets in opposite hemisphere with large dijet invariant mass

- * Charged leptons between the tagging jets
- Little jet activity in the * central region (no color flow; \rightarrow suppression of QCD background)

Inclusive analysis

Signature: 2 leptons and missing momentum

Possible backgrounds: WW non resonant, tt pair production single t production ($pp \rightarrow Wtb$) ZZ, Z/ γ^* bb pair production

Up to now (very beginning) : preliminary analysis including the qq \rightarrow WW background (tt & t back. at a qualitative level) and considering $l = e, \mu$

The WW nr background, I

Signal : Higgs scalar, W vectors => to have $J_{Tot}=0$ spin wave function must be:

$$WW(0,0_z) = \frac{1}{\sqrt{3}} \begin{pmatrix} W^+(+_z)W^-(-_z) + W^+(-_z)W^-(+_z) - W^+(0_z)W^-(0_z) \\ TT & TT & LL \end{pmatrix}$$

TL coupling not allowed

✓ Case TT: each lepton has the same S_Z of the mother and must be produced with definite elicity => max prob to have the leptons emitted in the same direction

✓ Case LL: again max prob to have leptons emitted in the same direction WWnr:

✓ Unpolarized initial state => TL coupling is allowed and @ M_{WW} ~160 half of the production rate

✓ Case TL: no correlation in leptons emission

Spin correlation

More isotropic signal leptons spatial distribution

Analysis

Signal and backgrounds generated using PYTHIA and TOPREX (for t/tt back) and the fast simulation for CMS (CMSJET)

Selections:

- Search for relatively central events with isolated charged leptons (e: PT > 20 GeV; μ : PT > 10 GeV; $|\eta| < 2$; leptons separated in space by more than 10 ° and isolated in the calorimeter)
- Missing PT cut: MPT > 20 GeV/c
- Invariant mass cut: M(ll) < 80 GeV (to reject leptons from Z peak)

Analysis

Selections:

- Jet veto: rejected events with one jet with PT > 20 GeV and $|\eta| < 2.4$
- $10^{\circ} < \Delta \varphi < 45^{\circ}$ (spin correlation)
- |cosθ (ll)| < 0.8
 (boost of WW background)
- $M_{T}(WW) > 140$

Summary & next steps

• This analysis showed that channel H →WW→ llvv can be a potential and quite fast channel for the Higgs discovery at the LHC

Our goals:

- quantitative study of all the backgrounds source to find the significance signal/noise
- inclusion of the $l = \tau$ channel, considering both leptonics and hadronic τ decays
- study of this channel with the full simulation chain

Signal						
	alagg t t t t t t t t t t t t t t t t t t	$ \begin{array}{c} \mu^{+} \\ \mu^{+} \\ \mu^{-} \\ \mu^{-} \\ \Psi^{-} \\ \overline{\nu}_{\mu} \end{array} $				
Reference sample	$H^0 \rightarrow W^+ W^- \rightarrow \mu^+ \nu_\mu \mu^- \overline{\nu}_\mu$	x-sec (pb)	events in the sample			
	M _H =120	0.036	9999			
	M _H =140	0.114	9997			
	<i>M_H=160</i>	0.182	9998			
	M _H =200	0.104	9999			

WWnr is the main bkgr, with the *same final states* but *reducible* (next slides)

Process	Pt _{min}	x-sec (pb)	N events	L
$q\overline{q} \rightarrow W^+W^- \rightarrow \mu^+ \nu_\mu \mu^- \overline{\nu}_\mu$	5,5	77	17599	$0.2fb^{-1}$
$b\overline{b} \rightarrow \mu^+\mu^- + X \text{ (Pt}_{\text{hard}} > 20)$	7,7	$(1.4) \cdot 10^7$	48471	3.5 <i>nb</i> -1
$Z / \gamma^* \rightarrow \mu^+ \mu^- + X$	3,3	10 ⁶	49489	49 <i>nb</i> -1
$t\bar{t} \to \mu^+ \mu^- + X$	5,5	621	17991	29 pb ⁻¹
$ZW, ZZ \rightarrow \mu\mu + X$	5,5	29, 12	36990	$O(fb^{-1})$

Not yet considered:

- Single top ($pp \rightarrow Wtb \rightarrow \mu^+\mu^- + X$)
- $gg \rightarrow W^+W^- \rightarrow \mu^+ \nu_\mu \mu^- \overline{\nu}_\mu$

Statistical Results

<i>M_H=160</i>	N _{ev} @ 5fb ⁻¹	N _{ev} @ 20fb ⁻¹
Signal	35	138
Background	22	88
σ	7.4	14.7

Results for other masses:

	Eff (%)	σ @ 5fb ⁻¹	σ @ 20fb ⁻¹	$L_{5\sigma}(fb^{-1})$
M _H =120	1.9	0.5	1.1	390
M _H =140	3.2	3.0	6.0	14
M _H =200	2.7	2.5	4.9	21

✓ M_H =120: not viable; other H production processes like Vector Bosons Fusion can be used (CMS Note 2002/26: pp->jjH, H->WW->llvv)

✓ M_H =200: different kinematic (e.g. no so effective spin correlation) different selections should be used