

TDR de Physique de CMS ... fin 2005

Principaux objectifs:

- Développement des outils de reconstruction et d'analyse et d'une stratégie détaillée (e.g. calibration, poids statistique de événements, etc.) pour quelques canaux sur le chemin critique de CMS, e.g. H → γ γ, μμ , ττ, ZZ*, WW* ...)
- Favoriser l'émergence de sous-groupes de CMS susceptibles de préparer ou garantir à moyen ou long terme une couverture des principaux canaux de mesures ou de découvertes
- Rentre CMS plus attractif vue de l'intérieur (e.g. CERN fellows, phénoménologistes, ...) et de l'extérieur (LHC Workshops, rattraper ATLAS sur nombre de sujets ..., attirer et conserver les post-docs, ...)

Montée en puissance pour la prospective de physique essentielle dès 2004 !!!

Planning a moyen et long terme \Rightarrow

- « seniors » + post-docs (nouveaux postes) + thésards
- e.g. recrutement dans les groupes CMS en France sur postes permanents de jeunes post-docs en provenance H1, ZEUS, D0, CDF ...

Stratégie actuelle de CMS e.g. $H \rightarrow \gamma \gamma$

Approche intégrée globale:

- o figer l'ensemble des paramètres de la mesure (e.g. clustering simple, coupures fixes) en « absorbant » les défauts (leakeage, collection partielle de l'energie, etc.)
- o procédure de calibration relative et absolue in situe basée (presqu') exclusivement sur des données réelles (Z → ee, W → ev, symétrie azymutale, ...) ⇔
 vise à dépendre aussi peu que possible du Monte Carlo
 (i.e. d'une connaissance *a priori* détaillée détaillée du détecteur)

Difficultés techniques diverses: e.g. inter-calibration relative et absolue Limitations des performances pour la physique ?: e.g. combinaisons likelihoods ...

Nécessité d'une approche complémentaire e.g. $H \rightarrow ZZ^* \rightarrow 4e$

- Ré-évaluer la stratégie de mesure du quadri-vecteur de l'e incident (Bremss recovery, constant fraction of energy collection ?, E-P combinations, etc.) + e ID. etc.
- Développer une méthode complète intégrant des poids statistiques (cinématique et mesure des événements) événement par événement (likelihood combinations)

•

Calibration W \rightarrow e v : oui mais comment ? e.g. C. Seez, CPT week May 2004

5869

Entries

- En faisceau test:
 » 10³ électrons par crystal
 On regarde un cristal à la fois
 Lissage de l'energie *vs.* point d'impact
 - en deux dimensions séparément
 - On determine la position du maximum de réponse ... facteur de correction vs. position
 - suffisant pour une zone centrale de 7x7mm² (i.e. ~10% de la surface d'un crystal)
 - Lissage de l'énergie corrigée
- In situ:

Y. Sirois, LLR Ecole Polytechnique

– On devra travailler avec 10 à 10² électrons par cristal

E vs Y

3000

- On doit donc résoudre le problème de la "mesure d'énergie vs. le point d'impact" en reconstruisant toute la gerbe
- Il faut determiner les constantes de calibration sur plusieurs cristaux
- Il faut développer des techniques itératives

4500 4000 Y (mm) Corrected Pulse Maximum Corrected Pulse Maximum Entrie 1.278e+05 ± 1490 ä 400 5342 ± 0.4966 36.89 ± 0.4181 , 1200 1000 800 600 400 5000 5200 5400 5600 5800 6000 Corrected energy (ADC counts)

Plots from Alessio Ghezzi (WACH4, Milan, Mar 2004)

Radiations dans le matériel du trajectomètre

1.5

η

2

2.5

La queue de E_{meas}/E_{true} varie avec le matériel du trajectomètre

- P_{meas}/P_{true} dépend aussi du Bremms et du matériel dans le trajectomètre
 - Aim is to inter-calibrate in small regions where tracker material is ~constant
 - Then inter-calibrate these regions with each other using very tight selection which largely excludes brem
 - There are other η -dependent effects, besides bremsstrahlung

- Les algorithmes de clustering ne collectent pas 100% de l'énergie déposée dans le ECAL
 - Once enough energy is collected to reduce sampling fluctuations, there is no special benefit in collecting more... ("enough" $\geq -90\%$)
 - Most important: collect a constant fraction!
 - Spatial uniformity
 - Energy linearity
- "Energy scale" correction needed for Monte-Carlo data
- Variation of the fraction of energy contained (for whatever reason) can be corrected at the same time
 - Electron super-clustering algorithms corrected by $f(N_{cry})$ compensate for brems loss
 - Recent studies show current corrections only valid for a very limited energy

L'échelle d'énergie et les algorithmes de clustering [2]

- Unconverted photon 5x5 clusters can be corrected for lateral containment variation as $f(\Sigma 1/\Sigma 9)$
 - $\Sigma 1/\Sigma 9$ measures the impact position w/r to the crystal centre

Example from J. Branson et al in $H \rightarrow \gamma \gamma$ analysis

– No current implementation in ElectronPhoton

• The large variation of e response versus η due to variation of thickness of tracker material is not the ONLY η -dependence in the barrel

Study of Maiko Takahashi

"Umbrella effect" mentioned by Alain Givernaud, Elizabeth Locci et al (see CMS TN1995/151)

- Conclusion: global inter-calibration depends on particle type and reconstruction algorithm
 - Or: push these corrections into the reconstruction algorithms

- Pertes d'énergie pour les gerbes traversant les bords de modules;
- La perte d'énergie peut etre corrigée en fonction de In(E_{one side}/E_{other side}) Daponte, Givernaud, Locci CMS Note-1997/087.
- Correction déjà appliquée pour les études du ECAL TDR (outils implémentées dans ElectronPhoton de ORCA)

Y. Sirois, LLR Ecole Polytechnique

Event-by-event likelihoods

-0.02

-0.025

-0.03

-0.035

-0.04

-0.045

(S25 - Etrue)/Etrue vs. S1/S9

inear fit

0.6

y = 0.023434*x - 0.044706

0.7

0.8

0.9

nonconverted photons

0.4

0.5

|eta| < 1.4442

0.3

Event-by-event likelihoods

h1 Entries

Mean

RMS

9986

0.6973 0.1253

J. Branson, UCSD Caltech

« Gain a factor 2 (conservative) to 5 (actual simulations) in luminosity reduction for a 5 σ discovery ...

i.e. < 10 fb⁻¹ instead of 20 to 40 fb⁻¹» !!!

CPT Week May 2004

e Road MAP

Track finding efficiency

specific algorithm development track parameter optimization

e ID

track-cluster matching resolving ambiguities shower profile

Isolation

Ecal, Tracker, Hcal and Combined isolation underlying events ...

Internal Bremsstrahlung recovery

Energy-momentum estimation

Ecal E estimation Tracker P estimation Combination E-P

Search for Single Higgs Boson Production in H \rightarrow ZZ^{*} and WW^{*} with final state leptons LLR Palaiseau - FESB Split

Y. Sirois, LLR Ecole Polytechnique

Search for Single Higgs Boson Production in $H \rightarrow ZZ^*$ and WW* with final state leptons

LLR Palaiseau - FESB Split S. Bimbot*, P. Busson, C. Charlot, F. Ferri*, N. Godinovitch, P. Paganini, I. Puljak, C. Rovelli*, Y. Sirois

Goal: perform a complete prospective analysis to optimize the Higgs boson discovery potential and measurements in the channels $pp \rightarrow H + X \rightarrow ZZ^*$ or $WW^* + X$ in event topologies containing al least two high P \perp leptons

Profit some specific expertise of the LLR-CMS group:

• Ecal detector and CMS triggering system, e reconstruction and identification, data reduction, etc.

Extend from previous LLR-SPLIT work on prospective for the Higgs boson:

- $H \rightarrow ZZ^* \rightarrow 4e$
 - I. Puljak (LLR, supervisor C. Charlot); ... first detailed study of discovery potential N. Godinovitc (Split, supervisor I. Puljak), ... measuring Higgs Spin and CP

Connect with LLR activities (C. Collard, Ph. Miné et al.) on Extra-Dimension Searches:

 Common focusing/expertise on event topologies containing at least two (very) high P⊥ leptons (possibility to extend to G → I⁺I⁻, ZZ^{*}, ...

Y. Sirois, LLR Ecole Polytechnique

Thèses en cours au LLR

- $H \rightarrow ZZ^* \rightarrow 4e$ <u>S. Bimbot</u> (LLR, supervisor P. Paganini)
 - ▶ e reconstruction in the Ecal (clustering, Bremmstrahlung recovery, ...)
 - ▶ lowest possible P⊥ threshold (effects from selective readout, noise etc.),
 - ▶ control of systematics (trigger and measurements efficiencies, intercalibration, ...)
 - \blacktriangleright optimize discovery potential down to lowest possible M_{H} (versus $\mathcal L$)
 - (e.g. with sequential set of cuts)
 - extend to $\mathbf{H} \rightarrow \mathbf{Z}\gamma$ (high \mathcal{L})
- $H \rightarrow ZZ^* \rightarrow 4 \text{ leptons}^{\pm}$ <u>F. Ferri</u> (LLR-Milano, supervisors Y.Sirois/A. Pullia)
 - combination of I⁺I⁻ final states including τ leptons (μ or e-like modes);
 - e and τ lepton identification (isolation, cluster-track matching)
 - optimize discovery potential in intermediate M_H range (versus \mathcal{L})
 - (e.g. with likelihood combination of observables and decay channels)
 - ► constraints and measurements of Spin and CP quantum numbers (high *L*)
- $H \rightarrow WW^* \rightarrow I^+ \nu I^- \nu$ <u>C. Rovelli</u> (LLR-Milano, supervisors P. Busson/S. Ragazzi)
 - global Eflow variables
 - I⁺I⁻ final states including τ leptons (hadronic modes);
 - optimize discovery potential for $130 < M_H < 2 M_Z$ (versus \mathcal{L})
 - exploit spin-chirality induced final state correlations
 - extension $H \rightarrow ZZ^* \rightarrow I^+ I^- \nu \nu$ (discovery potential at $M_H >> 2 M_Z$)

Measuring electrons for ZZ* channel in CMS

« A la recherche du lepton perdu » Marcel Proust 1923 (!)

- In ZZ* \rightarrow 4 e[±] channel, preserving the highest possible efficiency ϵ is essential
- Sharp Z* threshold for H \rightarrow ZZ* \Rightarrow in most cases $~M_{H}$ ~ M_{Z} + $M_{Z^{*}}$ for M_{H} < 2 M_{Z}
- Main challenge: lowest $P \perp$ electron (generally originating from Z^*)

Lowest P⊥ electron:

4-momentum measurement =

tracker issue for single isolated tracks (most precise **P**, easy signed) but

tracker + calorimetry issue for early showering electrons ?

Pattern Recognition =

calorimetry issue for single isolated tracks (known showering profile) but

tracker + calorimetry issue for early showering electrons (?) and isolation

Q ? Can we recover substantial ε in H \rightarrow ZZ* by relaxing pattern recognition and isolation requirements on the lowest P \perp e while preserving proper rejection power for misidentified background ?

Towards a LLR Palaiseau - CERN Global Effort ? C. Charlot, C. Collard, P. Miné, A. DeRoeck, Y. S.

Short term Goal: perform a complete prospective overview of the field and of the corresponding status of the analyses in CMS Mini-Workshop au LLR le Vendredi 28 Mai 2004 !!!

