

Surface events R&D

Active area of detector R&D to remove this potential limit.

Incomplete charge collection for surface events (mostly β) is observed to depend strongly on implantation scheme for electrodes (B, P implantation; Al vaporisation, presence of SI dead layer).

Bad charge collection of surface β can be tagged by faster risetime of (athermal) phonon signal

Other R&D (Edelweiss) plans to discriminate against surface β using:

* Amplitude of ballistic (fast) component in NbSi thin films

* Risetime of ionisation signal

* Heat+ionis., still installed just below ground (μ veto). * 3 X 165 g Ge and 1 X 100 g Si detector

Total exposure 10.3 kg.d

Surface events:

* Guard electrode (reject ~50% of fiducial volume close to surface)

- * amorphous Si deposit
- * Ge shielding.

13 nuclear recoil events 1.5 identified as (probably) neutrons: Ionization Yield * shape of E_{recoil} spectra * comparison of Ge / Si rates (n / WIMP ~ 12) * comparison of single / double scatters 00 -> Subtract neutron background \odot using maximum likelihood 0 0.5 0 1 1.5 Ionization Yield

Jules Gascon - UCBL/IPN-Lyon

CDMS

Jules Gascon - UCBL/IPN-Lyon

recent development:

First operation of 320 g detector

Improved volume/surface

Two-electrode detector to exclude most of the outer volume from fiducial volume

Steady improvements in background rates

Jules Gascon - UCBL/IPN-Lyon

The Edelweiss detectors

Ge4 (1997 data set): h = 8mm, Diameter = 48mm

70 g High-purity Ge crystal (here in its copper holder)

Ionisation measurement:

Electrodes by B and P implantation. p-i-n diode structure allows large fields (operated at 2-12 V)

~1 keV resolution FWHM for Eγ=122 keV.

Heat measurement:

Neutron Transmutation Doped Ge Thermistor glued to the detector. Base temperature of the cryostat: 10-18 mK.

Heat signal: $\Delta T \sim 0.1 \mu K/keV \rightarrow \Delta V \sim 0.2 \mu V/keV$

~1 keV resolution FWHM for E γ =122 keV.

Jules Gascon - UCBL/IPN-Lyon

Jules Gascon - UCBL/IPN-Lyon

The advantages of bolometers

- Measure directly the recoil energy, instead of (quenched) ionisation or scintillation yield
- Excellent energy resolution and low threshold achievable.
- Wide variety of target material (A,spin,radiopurity)

Heat-only detectors: CRESST, CUORE, ROSEBUD

• Event-by-event identification of nuclear recoils...

... combining heat with ionisation or scintillation measurement. Achieving >99% rejection of (dominant) γ and β background, ~100 g detector competes with ~10 kg Ge or NaI.

Jules Gascon - UCBL/IPN-Lyon

Genius

The ultimate all-Ge experiment?

* large mass of Ge (100 kg Genino first stage) as selfshielding (Ge is extremely radiopure),

* surrounded by liquid Nitrogen (another material easy to purify) tank 12m x 12 m:

* and almost nothing else (...kevlar wire suspension)!

Proposal for Gran Sasso Genino, 5m x 5m tank:

Jules Gascon - UCBL/IPN-Lyon

Ge experiments

HD-Moscow (hep-ex/9811045), IGEX(hep-ex/0002053)

Count rate below ~0.04 /kg/day, but not below ~9 keV (recoil ~30 keV)

Jules Gascon - UCBL/IPN-Lyon

Other Nal experiments

ELEGANT:

- * use annual modulation: 2133 kg.d so far (1/30 DAMA), ~5 evt/kg/d around 5 keV.
- * Also: inelastic collision on ¹²⁷I (recoil + 57.6 keV)

DAMA-0, UKDMC, Saclay-Lyon:

* statistical discrimination using time constant of scintillation pulses

Jules Gascon - UCBL/IPN-Lyon

New data with 100 kg Nal array: 57986 kg.d in total since Nal-0

Assume background has no time dependence.

Finds $M_{WIMP} = 52 + 10_{-8}$ GeV, $\sigma_{WIMP-n} = 7.2 + 0.4_{-0.9} + 10^{-6}$ pb

at 4
$$\sigma$$
 C.L.

~ 0.5 counts/kg/day/keV in 2-3 keV E_{scintillation} bin

Jules Gascon - UCBL/IPN-Lyon

Different strategies...

1) Go to largest possible mass, using "standard" detectors (Ge, Nal). Best bounds: IGEX, HD-M, DAMA. To remove background

* go to even larger, self-shielding volume (GENIUS)

* or use statistical discrimination using annual modulation (DAMA, ELEGANT),

* or pulse shape discrimination (UKDMC, Saclay+Lyon)

2) Go to lowest possible threshold (explore low-mass, non-MSSM, WIMPS): heat measurement (CRESST, ROSEBUD, CUORE).

3) Develop event-by-event discrimination of nuclear/electronic recoils (gain in discrimination to compensate lack of mass),

* Heat and Ionisation (CDMS, EDELWEISS). Best bounds: CDMS, with ~1/5000 of DAMA exposure in kg.d.

- * Heat and scintillation (CRESST)
- * Superheated Droplets (SIMPLE, PICASSO)
- * Scintillating grains (CASPAR)
- * Scintillation lifetime in Liquid Xe (ZEPLIN-I)
- * Superfluid 3He (MACHe3)
- ... and when technology is ready, go to large volume!

4) Directional sensitivity: reconstruct ionisation tracks (dE/dx, length) in low-pressure Ar/Xe TPC (DRIFT)

Removing the Background

Electronic recoils (Photons, electrons): Dominating background

Radiopurity Lead (+Cu) shielding Measure heat AND ionisation (CDMS,Edelweiss), or heat and scintillation (CRESST); event-by-event rejection. Detector sensitive only to large energy deposition in small volume (CaF2 grains, Superheated Droplet).

Nuclear recoils from neutrons

Light-A shielding Coincidence between detectors (neutron interaction length ~ few cm) Compare rates in detectors with different A's

 $(\sigma_{WIMP} \sim A^4, \sigma_{neutron} \sim A^{2/3})$

Other concern: nuclear recoils from surface contamination?

Cosmic-ray induced background (source of neutrons)

Underground site Coincidence with muon detector

Annual Modulation (see DAMA)

WARNING: low background = tail of distributions -> dealing with "exceptional" events: detector physics!

Jules Gascon - UCBL/IPN-Lyon

Form factors, ...

When wavelength of the momentum transfer comparable to nuclear radius:

σ -> σ **F²(q)**

coherent scattering: $F^2(q) \sim exp(-(qr/h)^2/5)$

Example: coherent scattering, ~gaussian distribution

Temperates slightly A-dependence of rates

Cross-section

Neutralino interact with nuclear matter via Higgs, squarks and Z exchange.

For massive nuclei, the axialaxial part (prop. to the spin of the nucleus) can be neglected, the scalar-scalar part dominates (coherent scattering).

Relation between the wimp-nucleon and wimp-nucleus cross-sections (nucleus of atomic mass A, reduced mass μ):

$σ_{\chi-A} = σ_{\chi-n} (A μ(\chi,A))^2 / (μ(n,A))^2$

In the case of Ge, lodine: factor ~ $x10^5$ on rates: MSSM favors large A detectors

Counts / kg / day for $\sigma_{\chi-n}$ = 7x10 ⁻⁶ pb					
Mχ (GeV)	10	50	100		
in Ge	3	5	4		
in lodine	5	13	14		

Note: MSSM cross-sections may be 10,000 smaller!

Jules Gascon - UCBL/IPN-Lyon

Recoil distributions

let's assume:

 ρ_{DM} in our neighbourhood = 0.3 GeV/cm^3 (uniform) Maxwellian velocity distribution $<\!v_{WIMP}\!>$ = 220 km/s v_{SUN} = 220 km/s

-> Average WIMP kinetic energy, for M_{WIMP}=50 GeV: ~29 keV

Resulting recoil spectrum (in Ge): ~exponential

Average Recoil Energy in Ge

Mχ (GeV)	10	50	100
<e<sub>R> (keV)</e<sub>	4	29	43

Jules Gascon - UCBL/IPN-Lyon

The Case for WIMP Dark Matter

Astrophysics:

Rotation curves of galaxies, velocity distributions of clusters: large quantities of non-luminous mass. In our vicinity, $\rho \sim 0.3 \text{ GeV/cm}^3$.

Cosmology: $\Omega = \rho/\rho_c$, $\rho_c \sim 10^{-5}$ GeV/cm³.

Strong limits on total baryon density in universe ($\Omega_b \sim 0.05$). Structure formation requires large quantities of Cold Dark Matter -> heavy particle, decoupling from ordinary matter and radiation at early times:

 $\Omega_{CDM} \sim 0.3, \sigma_{annihilation} \sim 10^{-37} \text{ cm}^2$

Particle physics:

Weakly interacting particle a good candidate. Observation in laboratory of nuclear recoils from collisions with galactic halo WIMPs possible. Supersymmetry provides a natural candidate: the LSP neutralino.

The case for neutralino dark matter:

Other candidates exists (axions, axinos and more exotic...) however:

Predictions for rates (<1 event/kg/day or <1 /kg/year, or less...)

Comparisons between target nucleus

Comparison between direct and indirect (cosmic rays and neutrino observatories) searches.

LEP constraint on neutralino mass (>32 GeV/c²)

Direct search of WIMP Dark Matter with bolometers

Direct Search: observing nuclear recoils induced by collisions with Weakly Interacting Massive Particles from the galactic halo.

- What WIMPS are
- Their experimental signature
 - Non-bolometric searches DAMA: Nal Heidelberg-Moscow, GENIUS: Ge
- Bolometer experiments
 - Heat (ex.: CRESST) Heat and scintillation (ex.: CRESST) Heat and ionisation (EDELWEISS and CDMS)
- Prospects
- Conclusions