Test Beam Results of a Tungsten/Quartz-Fibre Calorimeter for the Luminosity Measurement in H1

Arnd E. Specka, H1 Collaboration Ecole Polytechnique, CNRS-IN2P3, Palaiseau, France

- **The Calorimeter:** Functionality, Requirements, Solutions
- **Energy Response:** Intercalibration, Linearity, Resolution
- **Spatial Response:** Uniformity, Shower Profile, Position Reconstruction

Luminosity Measurement in H1 after the HERA2000 upgrade

Principle: bremsstrahlung process $\mathbf{e} \mathbf{p} \rightarrow \mathbf{e'} \mathbf{p} \gamma$ $\Rightarrow \gamma \text{ counting & Bethe-Heitler (BH) cross section } \sigma_{BH}$ I.P. sync. rad. $\mathbf{e'}$ \mathbf{FT} HERA 2000 UPGRADE: $\mathcal{L} \times 4 \& E_e = 30 \text{ GeV}$

Main Consequences for the H1 Luminosity Measurement

- ► stronger synchrotron radiation: $P = 400 \text{ W} \nearrow P = 2000 \text{ W}$ $E_C = 35 \text{ keV} \nearrow E_C = 160 \text{ keV}$ $\Rightarrow \text{Dose} = \mathcal{O}(\text{Trad/a})$
 - higher event rate \Rightarrow pile-up (HERA bunch spacing: 96 ns)

Requirements for the New Photon Detector

- ▶ efficient synchrotron radiation filter

 → 2X₀ of Beryllium reduce the dose by a factor of ≈ 10⁴
 ▶ fast response → Čerenkov calorimetry
 ▶ radiation resistance → quartz fibres
 ▶ good energy resolution → maximal light yield + fine sampling
- \blacktriangleright position measurement of γ -beam ightarrow fine granularity in x and y

The W/Quartz-Fibre Calorimeter (1)

Sampling Calorimeter with Twodimensional Strip Geometry

Fibres

- 15422 uncoated quartz fibres (total length $\approx 11 \, \mathrm{km}$)
- core: pure fused SiO₂ (low OH content), diameter 0.6 mm
- cladding: "hard polymer" (PMMA), numerical aperture: 0.37
- radiation resistance: measured induced attenuation of $\approx 1 \, dB/cm$

for D = 200 - 400 Mrad (at very high dose rates)

Fibre Readout

- fused silica light mixers (truncated square pyramids)
- quartz window 11/8'' PMTs (PHOTONIS XP2978)

Radiators

• 12 strips in each direction x and y, effective width 10 mm

The Tungsten/Quartz-Fibre Čerenkov Calorimeter (2)

Key Parameters

tungsten/fibre	
volume ratio:	1.68
total depth:	25 X ₀
sampling freq.:	0.36
average X0:	7.8 mm
Moliere radius:	17 mm

Design Performance stoch. term: 19.8% sampling: 16.4% photostat.: 11.1% [following M. Lundin et al., NIM A372 (1996)]

ENERGY RESPONSE(1): Strip Intercalibration

determine calibration coefficients by iterative method using strip response spectra

REPEAT (convergence after 3 iterations)

RESULT: Gaussian Peak for *E*-sum

→additional check: response uniformity

ENERGY RESPONSE (2): Response Linearity

ENERGY RESPONSE (3): Energy Resolution

Measurement of photostatistics with LED calibration system:

130 p.e./GeV \Rightarrow photostatistics contribution to stoch. term: $\frac{9\%}{\sqrt{E}}$

SPATIAL RESPONSE (1): Uniformity

scan of calorimeter center at various E_{BEAM} (50 GeV shown here) \rightarrow additional check of intercalibration

SPATIAL RESPONSE (2): Shower Profile Parametrization

E Dependence of Shower Profile

Variation of core and cloud sizes σ_1 and σ_2 , core fraction f, and n% Moliere radius with energy

- 80% Molière radius $pprox 6\,{
 m mm}$
- 90% Molière radius $pprox 14 \, \mathrm{mm}$
- deposited energy 90% Molière radius $pprox 17\,\mathrm{mm}$

With increasing energy, the shower core component decreases slightly and becomes narrower.

SPATIAL RESPONSE (4): Impact Position Reconstruction

SUMMARY AND CONCLUSION

- new H1 Luminosity Detector designed and built in one year
- ▶ first QFCAL with fibres at 45° and granularity in two directions
- \blacktriangleright tested and calibrated at CERN in SPS-H4 m e beam in 1999 and 2000: 6–100 m GeV
- > good energy resolution $(\frac{19\%\sqrt{E}}{E})$ due to fine sampling and high fibre content
- E response linear and uniform within one per cent (improvement possible)
- two shower components measured, high sensitivity to shower core (due to fibre angle)
- > precise impact position reconstruction demonstrated $(\frac{5 \text{ mm}}{\sqrt{E[\text{GeV}]}})$
- installation in HERA tunnel in january 2001, luminosity measurement in august 2001