Beam Tests of a Thin Dual Readout Calorimeter for an Experiment Outside the Earth's Atmosphere

> V.Nagaslaev Texas Tech University

Calor2000, Annecy

<u>A</u>dvanced <u>C</u>osmic ray <u>C</u>omposition <u>E</u>xperiment on the <u>S</u>pace <u>S</u>tation

Objective: to measure the energy spectra of individual elements up to 10^{15} eV

Probe the limits of SN SW models

Cosmic ray propagation

Regions where very few secondaries

Structures produced by different sources in electron spectra

V.Nagaslaev, TTU

Calor2000

Dual readout

Fluctuations in a thin calorimeter - em vs leakage

Scintillator sampling

Quartz sampling

Combination Q+S:

complimentary information: gives a handle to estimate leakage event-by-event

V.Nagaslaev, TTU

Calor2000

Beam tests at CERN

Setup: Calorimeter Target Preshower Tail Catcher Trigger

375 GeV p⁺ max 50-300 GeV e⁻ calibration 150-350 GeV π⁻ E-scan

V.Nagaslaev, TTU

Electrons

Calibration runs with 150 GeV electrons, 3 times during the test Energy scan 50-300 GeV

Projected to very high energies, sampling fluctuations are small compared to the dominant one

President Court and an an an an an and a second second second to be

V.Nagaslaev, TTU

Calor2000

October 9, 2000

Hadrons

S and Q spectra

375 GeV protons

no target: low signal in all target counters

target on: shower signal in the last section of the target $(1/4 \lambda)$

V.Nagaslaev, TTU

Calor2000

S-Q correlation plot (banana)

Scaled correlation curves, correction

V.Nagaslaev, TTU

Calor2000

Data added to plots in attachment

New data - light output increased

Beam test in August, 2000: *modified calorimeter*

- 1) 4 times more quartz in central towers
- 2) Quartz window PMTs (R5900-6) in central towers

Conclusions

-Two types of readout, Q and S, give complementary information about shower development -Combining Q and S makes it possible to reduce the main source of fluctuations in this calorimeter -Correction procedure may be energy independent -Improvement that can be achieved is limited by the light yield in quartz in the energy range studied -Subsequent tests confirmed that light output increase results in further improvement of the method -If the trend continues, considerable improvement in energy resolution may be expected in the energy range of ACCESS interest (>10 TeV)

V.Nagaslaev, TTU

Calor2000