Lead Tungstate Crystal Quality Control for the CMS High-Resolution calorimeter

- ECAL Performance
- Crystal specifications
- Crystal characterisation
- ACCOS machines
- Status and some results

Annecy-le-Vieux October 13, 2000

M. Schneegans CERN/LAPP

Introduction:

The CMS electromagnetic calorimeter:

aims at a very high resolution for e and γ:

 $\sigma/E \approx a/\sqrt{E} \oplus C \ll 1\%$

down to relatively low γ energies:

50 ≈ 70 GeV for Higgs search in intermediate mass region!

This means that:

⇒ both stochastic term a and constant term C must be small!

Aim:

 $a \leq 3\%$

 $C \leq 0.5\%$

- @ Stochastic term a is usually low for Homogeneous media, such as crystals, provided there is enough light collected:
 - → For PWO, level of Light output must be carefully checke
- @ Constant term C is small only in a 'dedicated' calorimeter, i.e. a calorimeter with all parameters carefully optimised!

In crystals, one of the main contributions to the C-term is: the longitudinal light collection non-uniformity, due to:

- light attenuation along crystals,
- tapered shape of crystals pointing to the interaction region
- → Uniformity of LY along crystal must be carefully checke

PWO characterisation for ECAL

Several years of R&D on PWO have shown that in ord to guarantee crystal properties adequate for a high-resoluti ECAL, one needs to measure:

- 1. Quantity of Light Collected: Light Yield (LY)
- 2. Non-Uniformity of Light Collection (NU)
- 3. Decay Time (DT) to collect most of the light in a short
- 4. Longitudinal Light Transmission (LT):
 - to check optical quality: presence of absorption band
 - to maximise LY (correlation LT/LY)
 - to understand NU profiles
 - to 'predict' Radiation Hardness (slope of band edge ris
- 5. Transversal Transmission (TT) along crystal:
 - to check homogeneity: absence of large TT gradie
 - to understand NU profiles
- 6. Radiation Hardness (RH):

to stand LHC high radiation levels with:

- 'small' LY losses (by transmission decrease)
- negligible effect on NU of crystals
- 7. Dimensions (Dim):

To guarantee mounting in individual 'alveoles' with enough clearance to avoid transmission of constraints!

Geometry

- ♦ L, AF, BF, CF, AR, BR, CR: $0 \leftarrow \rightarrow -0.1 \text{ mm}$
 - 0 \ 7 0.1 1111
- Planarity <0.02 mm for all faces,
- Angles: ≤ 0.05/d
- Chamfers: 0.3 mm ← → 0.7 mm in diagonal projection
- ♦ 5 faces optically polished: Ra ≤ 0.02 μm
- 1 side face (D) polished only to Ra $\approx 0.45 \pm 0.05 \, \mu m$

Optical Transmission

• Longitudinal:

≥10% at 360 nm ≥ 55% at 420 nm ≥ 65% at 620 nm

 Slope (S) of the band edge of longitudinal transmissic fitted between 340 and 370 nm:

S ≥ 3.0 %/nm

• Transversal:

At a Transmission of 50%, $\delta \lambda \leq 3$ nm for 6 measurements every 4 cm, starting at 1.5 cm from front face.

PWO2097 crystal with core defect Fransmission (%) Lab27 1pos - Lab27 2pos - Lab27 3pos - ACCOS

Wavelength (nm)

E.Auffray, M. Schneegans, El 15.09.98

Scintillation light:

- ♦ Light Yield: ≥ 8 photoelectrons/MeV
 - measured at 18°C and in a 100 nsec gate,
 - with 60Co source at 8Xo from PWO front face,
 - with a Phillips XP2262B photomultiplier,
 - covering all rear face, with n=1.5 silicon coupling grea
 - wrapped on 4 sides and end face in 1 layer of Tyvek.
- Decay Time: LY(100 ns)/LY(1μs) ≥ 90%
 - Afterglow \leq 0.5% of peak amplitude with a 60 Co counting rate of 1MHz

• Radiation Hardness:

- Induced absorption for full crystal saturation:
 μ ≤ 1.5 m⁻¹ at 420 nm
 for lateral ⁶⁰Co irradiation, ≥50 krad, ≥ 10 krad/h
- Light Yield loss ≤ 6% for front ⁶⁰Co irradiation, 200 rad, 15 rad/h ← Lift
- No recovery time constant shorter than 1 hour.

Crystal Quality Control Principles

- 1. All crystals are identified by a barcode label.
- Each crystal delivered by the producers is first carefully inspected by eye: Visual Inspection.
- 3. Crystals are registered in Database during Visual Inspectio
- Their main characteristics are then measured on a: Automatic Crystal Control System (ACCoS) in one of the two Regional Centers (RC).
- The certification (or rejection) of crystals is the responsability of the Regional Centers (RC) after full measurements.

@-

- 5. All (?) crystals are first measured with similar machines at the production plants in order to:
 - to monitor production quality,
 - to minimise crystal rejection rate.
- All ACCOS measurements are performed in a fully automatic mode with no manual crystal handling.
- 7. All data are automatically transferred to a common databate Object Oriented (C.R.I.S.T.A.L.) accessible from all labs.

 CRISTAL in fact 'pilots' all the measurements.

Crystal identification

Crystal registration & Visual inspection

Multifunctional box

STORAGE

ACCOS LOADING

CAPSULE GLUING

E. Auffray CERN EP-CMA Calor99, 15/06/99

Producers

 $\mathbf{v} \mathbf{v}$

Regional Centers

CERN/Geneva

ENEA/Rome

+ British Universities for End Cap construction

V

Crystal Quality Control

- Visual Inspection
- ACCOS Measurements

V APD/Capsule Gluing

V

Sub-Module (10 cx) Assembly

Module (400-600 cx) Assembly

Super-Module (4 Modules) Assembly

V Calibration in Beam

V

ECAL Global Assembly

Automatic Crystal Control System (ACCoS) <u>Main features</u>

1 Concept, 2 systems!

ACCoCE: 2 machines at CERN/B27, 1 in Bogoroditsk/Russ

- Concept and construction by a collaboration: LAPP/Annecy-INP/Minsk-CERN
- Crystals loaded on circular server in boxes of 5 units
- All crystal's barcode are first read-in on ACCoS server
- Dim measured by conventional 3D machine to $\pm 10 \, \mu m$,
- LT +TT measured by compact mobile spectrometers (Min with 10 interferential filters (TT in 11 points along crystals),
- DT, LY and NU measured by a Start-Stop method:
 - Start telescope: ²²Na source +BaF₂ crystal +PM
 - Stop telecope: PM at ~7mm from crystal large end
 - Decay time spectra in 21 points

One derives:

- → Time characteristics
- → Relative LY
- → NU profiles
- No systematic RH measurements by crystal Irradiation,
- RH 'predicted' by band edge slope in LT measurement,
- 30 crystals are measured in 7~9 hours.

ACCOS 2 $6 \times 5 = 3$ CAYS

E. Auffray CERN EP-CMA Calor99, 15/06/99

Barcode reading

Dimension measurements

E. Auffray CERN EP-CMA Calor99, 15/06/99

Longitudinal transmission

Transversal transmission

← kinetic SPECIRA ⇒ LY, NUL

E. Auffray CERN EP-CMA

E. Auffray CERN EP-CMA Calor99, 15/06/99

1 concept, 2 Systems...

ACCoR: 1 machine at ENEA/Rome, 1 in SIC/Shanghai

- Conceptual study and construction by the INFN/ENEA/Rome group
- Crystals presented on trays of 5 units on linear server,
- · All crystal's barcode are first read-in on ACCoS server
- Dim measured by conventional 3D machine to ±10 μm, €
- LT and TT measured by one classical spectrometer sliding with mirrors and integration sphere,
- LY and NU measured by standard Pulse Height method
 PM near-contact to large crystal end + sliding ⁶⁰Co source @

6

- DT checked by ratio: LY(100ns)/LY(1000ns),
- No systematic RH measurements by crystal Irradiation,
- RH 'predicted' by band edge slope in LT measurement,
- 30 crystals are measured in ~7-9 hours.

E. Auffray CERN EP-CMA Calor99, 15/06/99

E. Auffray CERN EP-CMA Calor99, 15/06/99

ACCOS machines Status

- ACCoCE1: Operational since 1.5 years
 ~5000 crystals of pre-production were received
 and controlled on this machine.
- ACCoCE2: Operational since last Summer
 Comparisons of results with ACCoCE1 under way.
- 3. ACCoBog: ACCoCE machine at BTCP/Bogoroditsk (producer)

 Operational since Fall 1999.

 Some chronic mechanical difficulties.

 Upgraded and revised these days.
- ACCoR: Operational since ~0.5 years
 Comparisons of results with ACCoCE1 under way.
- ACCoSIC: ACCoR machine at SIC/Shanghai (producer)
 In setting-up

Delivered crystals-Preproduction contract ISTC # 354b

Rejected crystals (in%)

E. Auffray

Conclusions

- ➤ The principle of measuring all main characteristics of each of ~80 000 crystals for CMS/ECAL has proved to be realistic
- ➤ The principle of fully automatic measurements and data transfer without crystal handling has proved feasible.
- ➤ The principle of measuring twice each crystal (at produce and in RC) is an additional guarantee of mounting in ECA well-known high-performance crystals.
- ACCOS machines, after relatively long start-up and deb ging periods are now performing well and reliably (not all y
- Measurements stability and reproductibility are goo provided performance is monitored continuously with he of Reference crystals.
- ACCOS machine capacities (up to ~100 crystals/day at CERI are well adapted to future peak production rates (up to 15 /month at CERN).
- Crystal rejection rates are continuously decreasing.

CRISTAL System

- Product and process tracking for CMS detectors
- 1 Terabyte collected over 4 years of construction
- Distributed over CERN, UK, Rome, China
- Industrial-strength software to handle complexity
- Flexible model, catering for system evolution
- Based on OO technologies (OODBMS, CORBA)
- Reusable for Tracker, HCAL, Muons
- Technology could be transferred to industry