The BaBar Electromagnetic Calorimeter

Performance report

Pierre Alexandre Fischer Iowa State University

October 9-14 2000

Requirements

Physics:– Photons [20

2

October 9-14 2000

Readout Electronics

- 2 Photodiodes / crystal -> averaging
 - Hamamatsu S-2744-08: 2x1 cm2
 - Quantum Efficiency = 70%
- Need 18 bit dynamic range
 - Preamplifiers
 - 2 gains
 - 0.4 ms shaping time (limit beam bkg)
 - ADC board: 2 gains + 10 bits (mantissa)
 4 MHz ADC
 - x1,x4,x32,x256 gains

October 9-14 2000

Picture Gallery

Crystals Installation

Front End Electronics 560 ADC boards 100 I/O boards

4

October 9-14 2000

Radioactive Source Calibration

Single Crystal Calibration $^{16}N \rightarrow ^{16}O^* + \boldsymbol{b} \rightarrow ^{16}O + \boldsymbol{g}(E = 6.13MeV)$ **Neutron** source Activated fluorine $T(\frac{1}{2})=7$ seconds Events / ADC ch $\chi^2/dof = 0.848$ 22.09 ± 0.04 ADC cts/MeV σ_c = 208 ± 1[†]1 keV 5.13 MeV peak has 545 evts 100 **Accuracy:** 0.35% / crystal for a 30 min run 50 0 4 6 8 2 Energy (MeV)

October 9-14 2000

Calor 2000

5

Radioactive Source Calibration

October 9-14 2000

Calor 2000

6

Radiation Damage

Endcap dose so far = 160 Rad

No uniformity problems

(Rafe Schindler)

October 9-14 2000

BhaBha Calibration

(Ralph Mueller-Pfefferkorn)
 High Energy calibration point

$$c^{2} = \sum_{k} \sum_{i} (C_{i}e_{i}^{k} - E^{k})/(s^{k})^{2}$$

- $E(expected) = f(cos\theta) + leakage corrections$
- Accumulate events and solve EQ by matrix inversion
- 12H of data -> 200 hits /crystal -> 0.4 % stat error

October 9-14 2000

Performance: Pi0's

• Simulation includes detailed electronics noise and real beam background mixing

October 9-14 2000

• Resolution = 3.5 % (E>1.5GeV)

10

October 9-14 2000

Performance: E/Eexp

Energy Resolution

- Use symmetric PiO and eta + BhaBha
- Measure mass and width:

$$\mathbf{s} = \sqrt{\frac{m^2}{2} \times \left(\frac{\Delta E}{E}\right)^2} + \frac{E^4 \sin^2 \mathbf{a}}{m^2} \left(\Delta \mathbf{a}\right)^2$$

Understanding resolution

	$\frac{\boldsymbol{s}_{E}}{E} (\%) a$	at 100 MeV
	real data (π^0 s, η s)	5.5 ± 0.5
	MC no bkg (single γ s)	4.5
Elex noise	MC no elec noise @ 90°	4
	MC no sparsification	3.6
	MC neighbor Ecut 1 MeV	3.2
	MC Digi & neighbor Ecut 0.5 MeV	2.7
	TDR	2.2

(Study by S. Menke and H. Marsiske)

- Things we can't improve:
 - material in front of EMC: 0.25->0.32Xo
 - material between crystal x1.3

Angular resolution

- Better than expected
 - use of logarithmic weighting of energy deposition to find centroid not used during design

Summary

- 1999-2000 run very successful
 - 21 fb-1 recorded
 - 2 dead crystals / 6580
 - radiation damage minimal
- Calibrations well understood
 - Radioactive source calibration is very precise (0.3% accuracy)
 - BhaBha calibration is being automated.
- Energy resolution

$$\frac{\Delta E}{E} = \frac{3\%}{E^{1/4}} + 1.25\%$$

And improving ...

