

The Lead Tungstate Calorimeter for CMS

R M Brown RAL - UK

CALOR 2000 Annecy - France October 2000

Outline of Talk

- Overview of CMS
- Parameters of the ECAL
- Properties of Lead Tungstate
- Radiation levels
- Crystal production
- Photodetectors: APD, VPT
- Mechanical design
- Preshower detector
- Prototype performance
- Monitoring system
- Electronic readout system
- Status summary

The Compact Muon Solenoid Detector for LHC

Physics goals: SUSY, Higgs, Heavy flavours, heavy ions

CLR

Where

Stochastic term:

Constant term:

Aim:

Noise term: Low \mathcal{L} c = 155 MeV 205 MeV 5000 210 MeV 245 MeV High \mathcal{L} 4000 (Angular resolution limited by uncertainty in position of interaction vertex) 110 e) R M Brown - RAL

ECAL design objectives

ECAL design choices

• ECAL (and HCAL) within magnetic vol

CLR

• Homogenous active medium (PbWO₄)

- Magnetic field-tolerant photodetectors with gain:
- Avalanche photodiode (APD) for barrel
- Vacuum phototriode (VPT) for end caps
- Pb/Si Preshower detector in end caps

Properties of dense inorganic scintillators

Property	BGO	BaF ₂	CeF ₃	PbWO ₄
Density [g/cm ³]	7.13	4.88	6.16	8.28
Rad length [cm]	1.12	2.06	1.68	0.89
Int length [cm]	21.8	29.9	26.2	22.4
Molière rad [cm]	2.33	3.39	2.63	2.19
Decay time [ns]	60 300	0.9 630	8 25	5(39%) 15(60%) 100(1%)
Refractive index	2.15	1.49	1.62	2.30
Max emiss [nm]	480	210 310	300 340	420
Temp coef [%/°C]	-1.6	0 -2	0.14	-2
Rel light yield	18	4 20	8	1.3

ECAL Parameters

Parameter	Barrel	End caps	
Coverage	$ \eta < 1.48$	$1.48 < \mid \eta \mid < 3.0$	
$R_{1}, R_{0} (\mathrm{mm})$	1238, 1750	316, 1711	
$z_{1}, z_{0} (\mathrm{mm})$	$0, \pm 3045$	$\pm 3170, \pm 3900$	
$\Delta \varphi \ge \Delta \eta$	0.0175×0.0175	0.0175×0.0175	
		to 0.05×0.05	
Xtal size (mm^3)	$21.8\times21.8\times230$	$30.0\times30.0\times220$	
Depth in X_0	25.8	24.7	
Off-pointing	3 ^o	3°	
N. crystals	61200	16000	
Volume (m^3)	8.14	3.02	
Xtal mass (t)	67.4	25.0	
Modularity	36 supermodules	4 Dees	
Crystals	1700/supermodule	4000 per Dee	
	20 in φ 85 in η		

CALOR 2000, Annecy, October 2000

Crystal production

Russia (Czochralski)

Preproduction (6000): 5000 delivered so far Production (30000): Order placed Delivery starts this year

China (modified Bridgman-Stockbarger) R&D phase advanced Preproduction: Planned start at end of 2000 Production: Planned start in 2001

Avalanche photodiodes (APD)

• Operated at a gain of 50

CLRC

- Active area of 2x25mm²/crystal
- Q.E. ~80% for $PbWO_4$ emission
- Excess noise factor is F=2.2
- Insensitive to shower leakage particles (d_{eff}~ 6μ m)
- Irradiation causes bulk leakage current to increase
- → electronic noise doubles after 10 yrs acceptable

Delivery from Hamamatsu starts this year

Photodetectors: end caps

Vacuum Phototriodes (VPT)

B-field orientation in end caps favourable for VPTs (Tube axes $8.5^{\circ} < |\theta| < 25.5^{\circ}$ with respect to field) Vacuum devices offer greater radiation hardness than Si diodes

• Gain 8 - 10 at B = 4 T

CLRC

- Active area of ~ 280 mm²/crystal
- Q.E. ~ 20% at 420 nm
- Excess noise factor is $F\!\sim\!3$
- Insensitive to shower leakage particles
- UV glass window less expensive than 'quartz'
- more radiation resistant than borosilicate glass
- Irradiation causes darkening of window
- → Loss in response < 20% after 10 yrs acceptable

Pilot order placed with RIE (St Petersburg): 100 devices delivered so far and under test

VPT Characteristics

CALOR 2000, Annecy, October 2000

Construction: end caps

'Supercrystal': carbon-fibre alveola containing 5x5 tapered crystals + VPTs + HV filter

- 160 Supercrystals per Dee
- All crystals have identical dimensions
- All Supercrystals are identical (apart from inner and outer circumference)

Preshower detector

Incident

Rapidity coverage: 1.65 < $|\eta|$ < 2.6 (End caps) Motivation: Improved π^{0}/γ discrimination

- 2 orthogonal planes of Si strip detectors behind $2 X_0$ and $1 X_0$ Pb respectively
- Strip pitch: 1.9 mm (60 mm long)
- Area: 16.5 m² $(4300 \text{ detectors}, 1.4 \times 10^5 \text{ channels})$

High radiation levels - Dose after 10 years:

- ~ $2 \times 10^{14} \, \text{n/cm}^2$
- $\sim 60 \, \text{kGy}$

CLRC

 \rightarrow Operate at -10°C

(γ -jet) is potentially the most serious background to $H \rightarrow \gamma \gamma$ Track isolation cut reduces (γ -jet) to $\approx 50\%$ of the intrinsic (γ - γ) background (p_T cut=2GeV/c) Use π^0/γ discrimination in the ECAL to gain an extra margin of safety Barrel: Lateral shower shape in crystals (limited by crystal size at high E_{π^0}) End cap: Cluster separation in preshower (limited by shower fluctuations at $3X_0$)

Energy resolution degraded by Pb absorber - partially restored using Si p.h. information

Excellent agreement between MC and data TDR performance achieved for E > 80 GeV ($\rightarrow E_T$ > 30 GeV - OK for H $\rightarrow \gamma\gamma$) (even though Pb 10% too thick in this test!)

Laser Correction for Effect of **Radiation Damage**

± 0.2 %

Proto 2000 - SIC crystal - Tower 19 irradiation data

60

80

Time (Hours)

100

Readout architecture CLRC Upper-level VME readout (in Counting Room) Light Energy Current Voltage Bits Pipeline \rightarrow \rightarrow Light Voltage Light Current Bits To DAQ Trigger Preamp Gain ADC PbWO₄ **Optical** Pipeline control APD Serialiser Interface \rightarrow DAQ **Crystal** VPT select +VCSEL link Interface \rightarrow Trigger On-detector *light-to-light* readout

- 40 MHz Clock
- 12 bit precision
- 4 different gains → >17 bit dynamic range

Status summary

Crystals	Russia:	Preproduction of 6000 Xtals on schedule Order for placed 30000 Xtals placed, delivery starts in 2001			
	China:	Preproduction in 2000/1, full production in 2002			
Photodetectors	APD:	Preproduction completed, main production imminent			
	VPT:	Pilot order placed, delivery started			
Mechanics	Barrel: End cap	Submodule parts in production Module: some design changes to achieve cost/performance target Procurement of supercrystal parts starts after EDR in November			
Electronics	Full readout chain tested in beam in 2000 - performance OK Some problems with manufacturing yields				
Monitoring	Components ordered and delivery on schedule				
Preshower	Preproduction of Si detectors started Preamplifier prototype tested: radiation harness + performance OK Mechanics progressing well.				
Summary	Some delays in mechanics/electronics/APD → Absorb by rescheduling Critical path defined by crystal delivery and precalibration in an electron beam				