The KLOE calorimeter front end electronics

P. Ciambrone, LNF-INFN for the KLOE collaboration

Presented by A. Passeri, INFN-Roma III

IX International Conference on Calorimetry in Particle Physics CALOR2000

Outline

- Requirements
- EMC FEE chain
 - Preamplifier
 - SDS board
 - -Adc
 - *Tdc*
- Performances
- Conclusions

The KLOE experiment in the DA Φ NE hall

The **KLOE** goal is to measure $\hat{A}(e^{i}e)$ to ~10⁻⁴

- Energy resolution $s(E)/E \sim 5\%/\sqrt{E(GeV)}$
- Full efficiency $20 < E_g < 300 \text{ MeV}$
- Time resolution

 $\boldsymbol{s}(t) \approx 70 \, \mathrm{ps} / \sqrt{\mathrm{E}(\mathrm{GeV})}$

Spatial resolution
 ~ 1 cm for g conversion point

- High resolution in time and energy
- Low noise (< 1 p.e.)
- Low time jitter (< 25 ps)
- Good bandwidth and dynamic range
- High long term stability and linearity (< 0.5%)
- Low dead time (< $2.3 \mu s$)

The FEE chain

- 4880 PM signals
- 492 FEE boards (SDS+ADC+TDC) with a modularity of 30 channels
- 12 9U crates for SDS with custom crate controller
- 40 custom linear power supply modules for SDS and preamplifier
- 24 9U-VME crates (ADC -TDC) with crate custom bus (AUX-bus)
- 4 chains with two inter-crate connecting buses
 - Slow speed commercial bus (VIC-bus) to initialization and test purposes
 - Fast speed custom bus (C-bus) for data read-out (50 Mbytes/s)

Why the preamplifier

- Drive a 50 Ω coax-cable
 - Back and forward termination
 - Transmission of fast pulses with minimal ghosts
- Reduce the PM anode current
 - Guarantee PM pulse linearity
 - Preserve PM gain stability

Specification

- Low noise
- Good dynamic range
- High reliability
- Low power
- Low cost

Discrete solution with only three transistors

Three stages in current feedback configuration

Good layout and smd technology

Preamp performances

- Conversion gain 247 V/A
- PM signal rise time ~ 2 ns
- Max input signal ~ 20 mA
- Max output signal 5V
- Non-linearity < 0.2%
- Power dissipation < 60 mW
- Test input

SDS board

- Shape signal for ADC
 - Passive third order Bessel filter
 - Compensate cable distortion
 - Stretch the pulse
 - Reduce ADC bandwidth
 - Amplifier to tune chain gain
- Discriminate signal for TDC
 - Constant fraction discriminator
 - Minimize time walk
 - Differential current output signal
 - Reduce stray elements and cable resistance effects on the rise edge
 - Increase common mode noise rejection

- First trigger stage
 - Reduce calorimeter granularity
 - Sum 5 PM signals of the same tower of the calorimeter module
 - Implement cosmic veto
 - Sum PM signals of outer plane of calorimeter module

SDS performances

- Time walk < 200 ps
- Threshold ~ $4 \div 5 \text{ mV} (3 \div 4 \text{ MeV})$
- Output rise time 1.2 ns
- Neighbouring channels cross-talk
 ~ -40 dB
- Output fall time ~10 ns
- Output signal FWHM ~16 ns

Signal arrival time

- Signals arrive at the input of ADC and TDC before the trigger at no fixed time
 - can precede the trigger by as much as 350(220) ns
 - KLOE physic
 - Trigger generation
 - Cables
 - Arrival time windows for all particles of an event must be ~ 200 ns

N	O integrated delay line		MISSING MAGNETIC FIELD	
	NO long coax-cable		ROOM and COST	
AD(ADC Double baseline sampling and difference technique			
TDC	Delay with monostable			

ADC working principle

V/I converter

- Match cable impedance with charge integrator input
 - Allow integrator long decay time
- Charge Integrator
 - Time constant ~ 0.5 ms
 - reduce sampling error
 - Cascode with FET input
 - Good bandwidth
 - Good linearity
 - Low noise
 - Bipolar output stage
 - capacitive load
- Sample and hold
 - 2 S&H free running with period of 900 ns
 - Guarantee correct baseline value in at least one S&H

ADC performances

- 30 channels per board
- Equivalent gate ~ 200 ns (starting 350 ns before the trigger)
- 12 bit resolution
 - Conversion gain
 - ~ 100 fC/count (~ 0.2 MeV/count)
- Integral non-linearity < 0.3%
- Pedestal RMS < 1 count (0.2 p.e.)
- Pedestal and gain spread $< \pm 3\%$
- Fixed conversion time $\sim 2.3 \mu s$

TDC working principle

- TAC
 - Monolithic chip in bipolar technology
- Common start mode
 - Asynchronous trigger operation

• Monostable

- Precise current source
- Adjustable delay
- Temperature compensation
 - trimmering system
 - monostable, TAC and ADC drift

TDC performances

- 30 channels per board
- 12 bit resolution
- Full scale 220 ns
- Conversion gain ~ 54 ps/count
- Resolution < 1 count
- Integral nonlinearity < 0.2%
- Temperature coefficient
 < ±0.3 count/°C
- Fixed conversion time $\sim 2.3 \,\mu s$

ADC - TDC logic

- Scan-logic
 - "Zero" suppression
 - Loadable look-up table
 - Pedestal subtraction
 - Loadable memory for ped. value
 - Hardware subtraction
 - Trigger counting
- VME -bus interface
 - Initialization
 - Monitor and test
- AUX -bus interface
 - Fast data read-out (40 Mbytes/sec)
 - Sparse data scan
 - Check trigger synchronization

- Two level hardware trigger
 - First level (T1)
 - Start ADC and TDC
 - Store data in latch
 - Fixed conversion time ~ $2.3 \,\mu s$
 - ready to accept another T1
 - Second level (T2)
 - $2 \ \mu s$ after T1
 - Start data scan
 - Zero suppr. and ped. subtract.
 - Data buffering in FIFO
 - Channel number + data
 - Allow asynchronous read out

Energy performances

P. Ciambrone, LNF-INFN

CALOR2000

Time performances

Conclusion

- The KLOE calorimeter and its FEE have been kept in operation for more than 2 years
- The measured performances are in good agreement with the specifications
 - Energy resolution ~ 5.7% / ÖE(Gev)
 - Time resolution ~ 54 ps / ÖE(Gev) Å 40 ps
 - Good timing and energy stability
- Good reliability has been reached
 - 0.1% bad channel (preamp, SDS daughter board, ADC, TDC)

PM and HV divider

- Fine-Mesh type
 - Hamamatsu R5946/01 1.5'
 - 16 stages
 - Rise time < 1.9 ns
 - Transit time spread < 0.35 ns
 - Gain ~ 10⁶ at 2000V
 - Magnetic field effect
 - 0.1-0.2 T with an angle < 25° respect PM axis
 - Gain change ~ 10%
 - No effect on linearity and resolution

- Grounded cathode scheme
 - Avoid noise due to micro-discharges
- Low current divider
 - ~ 150 μA at 2000 V
 - Low power dissipation
 - Self extinguishing at high light level

Control and Power

- Crate controller (16 SDS)
 - Custom crate bus for SDS control
 - Threshold downloading
 - Temperature and voltage monitor
 - Interface for remote access
 - H.S. CAENET and RS232
 - Pulse test generation
 - 96 pulser (5 PMs each)
 - 8 bit resolution

- Linear power supply (SDS+Preamp)
 - AC in 380V, 3 phases
 - Dual output voltages
 - $\pm 5V/54$ A
 - $\pm 6V/50 A$
 - Output power ~ 300 W
 - Shunt of two modules
 - Low output noise $< 2 \text{ mV}_{PP}(0 20\text{MHz})$

