CALOR2000 10.10.2000

<u>Test-Beam Results for First Serial</u> <u>Modules of ATLAS Hadronic</u> End-Cap Calorimeter

A.Minaenko^a Max-Planck-Institut für Physik Werner-Heisenberg-Institut München, Germany **for ATLAS HEC collaboration**

^aPermanent address: Institute for High Energy Physics, Protvino, Russia

- Module & setup description
- Electron data & comparison with MC
- Pion data & comparison with MC
- Muon data
- Summary

- HEC: 2 wheels of 32 wedges each
- LAr gap: 4×1.8 mm
- copper absorber 25 and 50 mm
- 4 longitudinal layers $\sim 10\lambda$
- TB setup: stack out of 6 HEC modules - 3 front and 3 rear
- energy scans at 15 points: A-O
- electrons and pions: energy interval 10-200 GeV
- muons 150 and 180 GeV
- 10K events per run

- cold preamplifier pole zero shaper - FADC
- signal peaking time ~ 50 ns
- 16 time samples at 40 MHz (25 ns)
- samples 1-5 are empty
- samples 7-11 are used for amplitude reconstruction
- amplitude: Optimal Filtering (OF)

$$A_{OF} = \vec{w}\vec{s}, \qquad \vec{w} = \frac{\hat{M}\vec{f}}{\vec{f}\hat{M}\vec{f}}$$

- accuracy of A_{OF} is about 0.5%
- OF noise suppression factor $S_{OF} = \sigma_{noise}^{OF} / \sigma_{noise}^{raw} = 0.55 \div 0.7$

- Cluster size is fixed for each impact point: no dependence on E_{beam}
- Cluster selection for electrons (pions): *mean* cell signal greater
 200(15) nA at 175(180) GeV
- Electron cluster: ~ 6 cells
- Pion cluster: $50 \div 60$ cells
- Cluster noise:
 - OF weights for samples 1-5
 - sum through all cluster's cells
- Characteristic electron (pion) cluster noise $\sim 0.6(6.)$ GeV

- Energy resolution: Gaussian fit in $E_0 \pm 2\sigma$ interval
- Energy dependence of resolution:
 - Noise is quadratically subtracted at each energy

$$- \qquad \sigma(E)/E = \frac{A}{\sqrt{E}} \oplus B$$

•
$$e/\pi = \frac{e/h}{1 + (e/h - 1) \cdot f_{\pi^0}}$$

•
$$f_{\pi^0} = 1 - \left(\frac{E}{E'_0}\right)^{m-1}$$

• where $E'_0 \approx 1$ GeV and $m \approx 0.85$

Summary

- cell responses to electrons are equalized with accuracy of $\pm 0.5\%$
- linearity of response for electron beam in the range 20÷200 GeV is in the limits ±1.5%
- Energy dependence of resolution for electrons:
 - sampling term $A = 21.4 \pm 0.5\%$ (MC 21.7 ± 0.1%)
 - constant term $B = 0.3 \pm 0.1\%$ (MC 0. $\pm 0.3\%$)

- Energy dependence of resolution for pions:
 - sampling term $A = 71.2 \pm 2\%$ (GCALOR $65.2 \pm 0.9\%$)
 - constant term $B = 6.0 \pm 0.2\%$ (GCALOR $5.0 \pm 0.1\%$)
- found e/h ratio 1.47 ± 0.05 differs from GCALOR prediction 1.32
- Muon signal to noise ratio is ~ 6

Projection on the front face of the HEC module

