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1) Requirements and Motivations

NA48 aim:

Measure direct CP violation in K0 system :

R =
N(KL → π0π0)N(KS → π+π−)
N(KS → π0π0)N(KL → π+π−)

= 1− 6Re(ε′/ε)

by counting number of decays in the 4 modes
π0π0 mode is reconstructed by detecting 4 γ in calorimeter

Aim uncertainty of ≈ 0.1% on R ⇒
• Need large statistic
• Need good calorimeter resolution to separate KL → π0π0 CP violating mode
(BR ≈ 0.1%) from much more abundant KL → 3π0 decays (BR ≈ 20%)

• Need very good control of systematic effects to minimise potential biases on R
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NA48 simultaneous and collinear KS and KL beams
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KS and KL beams are distinguished by proton tagging upstream of the KS target
⇒ Need good event time measurement
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NA48 detector

Kevlar window

Drift chamber 1

Anti counter 6
Drift chamber 2

Magnet

Drift chamber 3

Helium tank

Anti counter 7
Drift chamber 4

Hodoscope

Liquid krypton calorimeter
Hadron calorimeter

Muon veto sytem

✦ KL,S → π+π−

– Magnetic spectrometer (σX,Y ∼ 90 µm)
– σ(P )/P � 0.5 %⊕ 0.009 P [GeV/c] % (∼ 1 % for 100

GeV/c track momentum)
– Hodoscope for timing measurements (σt ∼ 200 ps)
– Muon veto to reject πµν background.



π0π0 Selection

• Measure (E,x,y) of 4 γ in calorimeter
• Reconstruct decay vertex position assuming Kaon

mass for 4 γ:

D =
√
ΣEiEjr2ij/MK

• ⇒ Decay region definition relies on calorimeter
information

• Photon pairing to get best π0 masses :
mij =

√
EiEjrij/D

• ⇒ Required mass resolution ≈ 1 MeV/c2

r

D

E
E

E
E

γ

γ
γ

γ

1

3
4

1

2

3

4

212

K



Requirements

• Energy resolution ≈ 1%, for <E> ≈ 25 GeV

• Position resolution ≈ 1mm

• Good time resolution (better than 500 ps )

• Non Linearity ≈ 0.1% between few GeV to 100 GeV

• Stands the KL decay rate (≈ 500 kHz)

• Good stability over several years
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NA48 choice

Quasi homogeneous Liquid Krypton calorimeter

• Almost fully active calorimeter ⇒ very good resolution

• Cold noble liquid ⇒ very good stability

• Initial current readout with fast shaping ⇒ high rate,
good time resolution

Summary of noble liquid characteristics :

Z density (g/cm3) X0 (cm) R(Moliere) (cm) T(bath) (K)
Ar 18 1.39 14.0 9.2 87.3
Kr 36 2.41 4.7 6.1 119.8
Xe 58 3.06 2.8 5.7 165.1
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2) The Lkr calorimeter

LKr  CALORIMETER  ELECTRODE  STRUCTURE

CuBe ribbons Beam tube

Back plate

Front plate

Outer rods

Spacer plates

• 127 cm long, 27 radiation lengths
• Electrodes ”parrallel” to beam axis with small

accordion angle (± 48 mrad)
• ≈ 13000 cells of 2×2 cm2

• Gap size ≈ 1cm
• 2mm vertical separation between electrodes
• Projective structure towards the middle of the K decay

region, 114 m upstream of the calorimeter
• Total amount of matter before Lkr ≈ 0.8 X0



Electrode Structure

The gap accuracy is enforced by 5 spacer planes, every 21 cm in z, which guide the
ribbons in the zig-zag geometry

+/-  0.048 rad

cathodes

anodes

2 cm x 2 cm
 ce l l

DETAIL  ON  RIBBONS
AND  SPACER-PLATE

• Spacer planes : fibber glass reinforced epoxy, 5 mm thick (≈ 0.025 X0)
• Accuracy of gap ≈ ± 45µm (≈ ± 0.45%)
• Overall size known to ≈ 3×10−4

• Electrodes : 98% Cu, 1.8% Be, 0.2% Co, dimensions 40µm × 18mm × 127 cm
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Cryogenic system

• ≈ 10 m3 of Lkr at 120K
• Kr purification ⇒ e− lifetime > 100 µs
• Temperature variations in the calorimeter < ± 0.3 K ⇒ no effect on the
response
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Readout
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HV=+3.0 KV

PA

Ical = Ktra * Vref

LKr bath 

TX

CPD

Comparators

Bessel filter

Amplifier

Pipeline

Gain switching

ADC

I I = I0 *(1-t/ )

I0~q/

Cb~3 nFgap

gap = (10+/-0.04) mm

Cd ~ 200 pF 

t

(4 offsets + 4 slopes) * 13212 channels = 105696 constants

10
bit

40
MHz

δ( )/ = −0.87%/Κ

energy (GeV)

adc

• initial current I0 = q.vd/d (for constant �E) vd ≈ 3100 m.s−1

• Pulse width after shaping ≈ 70 ns
• Gain switching + 10 bits ADC ⇒ dynamic range ≈ 3.5 MeV to 50 GeV
• Electronic noise per channel ≈ 10 MeV
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Example of pulse :

Gain information ADC information

• ADC clock frequency : 40 MHz
• Asynchronous with event time arrival
• Gain Switching based on derivative of signal before

shaping
⇒ Gain choice done typically 2-3 samples

before the maximum of the shaped signal
(the first sample after a gain change is not

correctly measured)
• Gain ratio ≈ 2.5
• E = gi × (ADC - Offseti)
• Use Offset0 ≈ 370 ADC counts to measure

undershoots of out-of-time pulses
• Read 10 time samples per event

⇒ Allow to check is signal sits on undershoot of
a earlier shower



Electronic calibration

Dispersion of gains of electronic chain ≈ 3% ⇒ electronic calibration
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• Ical(t) = I0e
− t

τ , τ ≈ 2 µs
• I0 = κ× Vref

• κ ∝ Ccal

• Dispersion of κ ≈ 10%
• κ measured by comparing signal given by calibration output to signal given by
a reference injected current, before final assembly, for each calib. channel (done
both at warm and cold in 96, at warm in 98). Accuracy ≈ 1%

• Gain stability : better than 0.1%
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Calorimeter Operation

• 1996 : Part of the readout electronic
• 1997 : First data taking with full calorimeter

operationnel

High Voltage = 1500 V (pb with some blocking capacitors)
⇒ small space charge effect
(see S.Palestini et al, NIM A421(1999)p75)

Winter 1997/1998 : Intervention to change all blocking
capacitors

• 1998,1999,2000 : data taking with High Voltage =
3000 V

⇒
• ≈ no space charge effect
• Electronic noise lower by ≈ 25%

Typically 50-70 misfunctionning channels (out of 13000)

30 are dead PA in Lkr (very stable situation)
the calorimeter is kept always cold

≈ 20 to 40 are related to warm electronic



3) Pulse reconstruction

Use Digital Filter method :

E = Σai × si, T = 1
EΣbi × si

si signal for sample i; ai, bi digital filter coefficients :
• Derived from observed pulse shape in calibration events
• Binned as a function of T

Divide channels into 10 categories
according to observed pulse width

time (ns)
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⇒ Accuracy to reconstruct calibration pulses : ≈ 0.1% on E, < 150 ps on T
Use three samples centred around maximum (compromise between noise reduction
and sensitivity to accidental showers)
(except few cases when one of these samples is not well measured)
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3) Shower Reconstruction

Sampling term limited by size used to
collect shower energy
From GEANT, expect :

R=∞ 1.2%/
√
E

R=11 cm 2.8%/
√
E

R= 7 cm 3.5%
√
E

distance (cell-electron) (cm)

E
(c

el
l)

/E
(e

le
c)

Compromise between noise (increases with R)
and sampling term (decreases with R)
⇒ Use R=11 cm to measure shower energy (≈ 100 cells)
(independent of energy to avoid bias on linearity)

Position is measured using 3×3 cells
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Position Resolution

Position resolution measured with electron beam sent to
the calorimeter in 96.

Position resolution better than 1mm above 25 GeV



Time Resolution

Event time = Average of photon times

Use K → 3 π0 → (n)γ e+e− to check photon time
measurement, by comparing photon time to time
reconstructed with e+e− (measured by scintillator
counters)

1
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-10 -8 -6 -4 -2 0 2 4 6 8 10

Neutral - Charged time in conversion (ns)Neutral - Charged time in conversion (ns)

Event time resolution < 250 ps

No tail outside ± 2 ns

Crucial for KL/KS identification in NA48



Energy Resolution (I)

Main tool to study in situ the performances of the calorimeter :

KL → π±e∓ν decays

Spectrometer ⇒ Impulsion p (resolution ≈ 0.5% to 1%)
Calorimeter ⇒ Energy E

In ideal world, E
p
= 1

Taking p as ”perfect”, this allows to
study
• variations in energy response
• the uniformity of the response
• the energy resolution
• the linearity

E/p

total statistic accumulated in 98+99 ≈ 150×106 events
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Energy Resolution : Modulation of response

Lower electric field in the middle
between electrodes ⇒
lower response at top/bottom of
cells

Y (cell units)

E
/p

Finite integration time ⇒
lower response close to the anode

t/td

i(
t)

X (cell units)

E
/p

Variations are smooth (thanks to accordion angle in x) ⇒ can be corrected using
measured shower position ⇒ Residual variations ≈ 0.1%
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Energy Resolution : Uniformity

Compute < E
p > for each cell

Variations ⇔ Non uniformity in calibration

Average E/p per cell

Average E/p per cell

Using Electronic Calibration ⇒ Dispersion = 0.4%
Consistent with accuracy of κ measurements ≈ 1%
( ≤ 40% of shower energy is in the impact cell)

Derive 1 static correction factor/cell ⇒
Dispersion = 0.15% (applying 98 factors to 99 data sample)



Energy Resolution

Unfold p resolution from E/p measured resolution
⇒ E resolution

Energy (GeV)
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In KL → πeν, energy measurement is based on 7*7 cells
(tighter zero suppression than in π0π0 events)
Extrapolate resolution to the nominal 11 cm radius cluster

⇒
σ(E)
E ≈ (3.2±0.2)%√

E
⊕ (0.09±0.01)

E ⊕(0.42±0.05)%

(where E is in GeV)

(coherent noise contribution to overall noise is almost
negligible)

Sampling term predicted by GEANT : ≈ 2.8%√
E



Energy Resolution : Comparison of different contributions

Illustrate the relative sizes of the various components to the energy resolution
For the average energy of 25 GeV :

• Sampling term : ≈ 0.64%
• Electronic noise: ≈ 0.35%
• Constant term : ≈ 0.42%

The overall resolution is 0.85%
The largest contribution is the sampling term
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Energy Resolution : Constant term

What are the contributions to the constant term in resolution ?

• GEANT simulation: ≈ 0.2% constant term
residual variations with impact point, fluctuations in longitudinal shower
development, · · ·

• Intercalibration accuracy: ≈ 0.15%
• Geometry (gap size) : ≈ 0.1 to 0.2%
• Pulse reconstruction :
– accuracy to reconstruct calibration pulses ≈ 0.1%
– Physics signal shape slightly different from calibration ⇒ ≈ 0.15%
⇒ ≈ 0.2% constant term contribution

Account qualitatively for the constant term observed in the data (0.42± 0.05)%
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Energy Resolution : Tails

Previous resolution is the result of gaussian fit

≈ 1% of showers have measured energy ≥ 3 σ lower than average

This is interpreted as coming mostly from π± production in electromagnetic shower
γ p → π± N (for instance)

⇒ far reaching low side tail :

≈ 0.1% of electrons have E
p < 0.8
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Energy Response Linearity

Use linear electronic calibration
Add 45 MeV to electron energy (energy loss in cryostat,
from GEANT)

Energy (GeV)

E
/p

⇒ Non linearity ≈ 0.1%
(from 5 to 100 GeV)

From simulation, expect ≤ 0.1% non linearity
later shower development at high energy
+ gap opening (i ∝ 1

gap )

Residual small non linearity probably coming from ADC



K → π0π0

Typical K → π0π0 event :

Need to correct for energy contamination from one shower
to another



π0 mass reconstruction

Fix K decay vertex assuming Kaon mass for 4 γ
Compute π0 masses

Ks to π0π0 candidates
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After π0 mass cut, residual background from KL → 3π0 is :

(0.066± 0.020)% (⇒ very small !)
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Energy Scale

In the neutral mode : D =
√∑

EiEj × (rij)2 /MK

⇒ Need good knowledge of Energy scale to define fiducial region
(the decay region definition should be the same for π0π0 and π+π− decays)
Known anti-KS counter position (vetoes decays upstream) → adjust Energy scale
(1 factor)

Neutral Ks decays
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∆E ~ 5.10-4

Accuracy of energy scale setting ≈ few 10−4

Variations with time < 5× 10−4
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Conclusions

The performances of the NA48 Lkr calorimeter have been
studied in situ

• Time resolution : ≈ 500 ps per photon

• Position resolution : better than 1mm above 25 GeV

• Energy resolution : better than 1 % above 20 GeV
(constant term ≈ 0.5% after Ke3 intercalibration)
(≈ 0.65% before)

• Non linearity : < 0.2 % in 5-100 GeV energy range

• Very stable operation over 4 years

⇒ matches requirements for precise measurement of direct
CP violation in K0 system
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