

DØ Calorimeter Electronics Upgrade for Tevatron Run II

Leslie Groer

Columbia University New York

October 11, 2000

CALOR2000

IX International Conference on Calorimetry in Particle Physics

Annecy, France October 9-14, 2000

e sli

CALOR2000 Conference DØ Calorimeter Electronics Upgrade Annecy, France Oct 2000

Tevatron Run I (1992-96)

- Very successful Run I
 - p-pbar collisions at s = 1.8 TeV
 - ↓ L dt ~ 120 pb⁻¹ delivered to DØ and CDF
 - Peak luminosity ~ 1.6 x 10³¹ cm⁻² s⁻¹
 - Many exciting studies, including
 - ▲ Top discovery
 - M_t = 172.1 \pm 5.2 (stat.) \pm 4.9 (syst.) GeV/c²
 - σ_{tt} = 5.9 \pm 1.7 pb (DØ combined)
 - ▲ W mass measurement
 - M_w = 80.482 ± 0.091 GeV (DØ combined)
 - ▲ Limits on anomolous gauge couplings
 - Limits on SUSY, LQ, compositeness, other exotica
 - ▲ Tests of QCD + Electroweak
 - ▲ b-quark physics
 - 100+ published papers
 - 60+ PhD theses

Fermilab Accelerator Upgrade

- Two new machines at FNAL for Run II:
 - Main Injector
 - 150 GeV conventional proton accelerator
 - Supports luminosity upgrade for the collider, future 120 GeV fixed-target program, and neutrino production for NUMI
 - Recycler
 - 8 GeV permanent magnet (monoenergetic) storage ring
 - permits antiproton recycling from the collider
- Tevatron Status and Schedule
 - DØ and CDF roll in January 2001
 - Run II start March 2001
 - 1.8 Tev → 2 TeV
 - Goal: $\int L dt = 2 \text{ fb}^{-1}$ by 2003

15 fb⁻¹+ by 2006?

 Very first p-pbar collisions seen (August 2000)

Run II Parameters

Parameter	Run IB	Run II	Units
	(1993-1995)	M I plus Recycler	
Energy	900	1000	GeV
Protons/bunch	23×10^{10}	27×10^{10}	
P-bars / bunch	5.5×10^{10}	7.5×10^{10}	
Bunches	6 ($36x36 \rightarrow 140x103$	
P-bar stacking	6×10^{10}	20×10^{10}	per hour
Crossing angle	0	136	µrad
Luminosity	1.6×10^{31}	2.1×10^{32}	$cm^{-2}s^{-1}$
Bunch Spacing	3500	$396 \rightarrow 132$	nsec
Interactions per crossing	2.7	$4.8 \rightarrow 2.3$	

Leslie Groer 4 CALOR2000 Conference Columbia University **DØ Calorimeter Electronics Upgrade** Annecy, France Oct 2000

Run II DØ Upgrade

Inner Detectors

- 840k channel silicon vertex detector
- 77k channel scintillating fiber tracker
- Scintillating strip preshower in central and forward regions. (6k and 16k channels)
- Intercryostat detector (scintillator tiles)

Leslie Groer6CALOR2000 ConferenceColumbia UniversityDØ Calorimeter Electronics Upgrade Annecy, France Oct 2000

- Central mounted on solenoid ($|\eta| < 1.2$)
- Forward on calorimeter endcaps (1.4 < |η| < 2.5)
- Extruded triangular scintillator strips with embedded WLS fibers and Pb absorber
- Trigger on low-p_T EM showers
- Reduce overall electron trigger rate by x3-5
- VLPC and SVX II readout

(Not to Scale)

 Leslie Groer
 7
 CALOR2000 Conference

 Columbia University
 DØ Calorimeter Electronics Upgrade
 Annecy, France Oct 2000

Intercryostat Detector (ICD)

• Objectives

LaTech UT, Arlington

- Maintain performance in presence of a magnetic field and additional material from solenoid
- Improve coverage for the region 1.1 < |η| < 1.4
- Improves jet E_T and **₽**_T

- Design
 - Scintillator based with phototube readout similar to Run I design. Re-use existing PMT's (Hamamatsu R647).
 - 16 supertile modules per cryostat with a total of 384 scintillator tiles
 - WLS fiber readout of scintillator tiles
 - Clear fiber light piping to region of low field ~40-50% signal loss over 5-6m fiber.
 - Readout/calibration scheme for electronics same as for L. Ar. Calorimeter but with adapted electronics and pulser shapes
 - LED pulsers used for PMT calibration

Relative yields measured > 20 p.e./m.i.p.

- Liquid argon sampling
 - Stable, uniform response, rad. hard, fine spatial seg.
 - LAr purity important
- Uranium absorber (Cu or Steel for coarse hadronic)
 - Compensating $e/\pi \sim 1$, dense \Rightarrow compact
- Uniform, hermetic with full coverage
 - $|\eta| < 4.2 \ (\theta \approx 2^{\circ}), \ \lambda_{int} > 7.2$ (total)
- Energy Resolution
 - e: $\sigma_{\rm E}$ / E = 15% / \sqrt{E} + 0.3% (e.g. 3.7% @ 20 GeV)

 $\pi: \sigma_{\rm E} / E = 45\% / \sqrt{E} + 4\%$ (e.g. 14%)

DØ Calorimeters (2)

- Arranged in semi-projective towers
- Readout cells ganged in layers
- Readout segmented into η , ϕ for charge detection
 - Transverse segmentation $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$
 - At shower max. (EM3) $\Delta \eta \times \Delta \phi = 0.05 \times 0.05$
- +2.5 kV (E = 11 kV/cm) gives drift time ~ 450 ns

Layer	CC	EC					
EM1,2,3,4	X _o : 2,2,7,10 3mm Ur	X _o : (0.3),3,8,9 (1.4mm Fe) 4mm Ur					
FH1,2,3,(4)	λ _o : 1.3,1.0,0.9 6mm Ur	λ _o : 1.3,1.2,1.2,1.2 6mm Ur					
CH1,(2,3)	λ _ο : 3.0	λ _o : 3.0, (3.0, 3.0)					
	46.5mm Cu	46.5mm Fe	Massless Gap				
(no absorber)							
	NA A A		Ano absorber)				
Intercryo	stat	0,4 0.6 0.6					
Intercryo Detector (stat						

Leslie Groer10CALOR2000 ConferenceColumbia UniversityDØ Calorimeter Electronics Upgrade Annecy, France Oct 2000

- Design all the electronics, triggers and DAQ to handle bunch structure with a minimum of 132ns between bunches and higher luminosity
- Maintain detector performance

Calorimeter Readout Electronics

• Objectives

- Accommodate reduced minimum bunch spacing from 3.5 μs to 396 ns or 132 ns and *L*~ 2 x 10³² cm⁻² s⁻¹
- Storage of analog signal for 4 μs for L1 trigger formation
- Generate trigger signals for calorimeter L1 trigger
- Maintain present level of noise performance and pile-up performance

- Replace preamplifiers
- Replace shapers
- Add analog storage
- Replace calibration system
- Replace timing and control system
- Keep Run I ADCs, crates and most cabling to minimize cost and time

Calorimeter Electronics Upgrade

55K readout channels

- Replace signal cables from cryostat to preamps $(110\Omega \rightarrow 30\Omega)$ for impedance match)
- Replacement of preamps, shapers, baseline subtraction circuitry (BLS)
- Addition of analog storage (48-element deep Switched Capacitor Array (SCA))
- New Timing and Control

New calibration pulser + current cables

Leslie Groer13CALOR2000 ConferenceColumbia UniversityDØ Calorimeter Electronics UpgradeAnnecy, France Oct 2000

Preamplifier

Columbia University **DØ Calorimeter Electronics Upgrade** Annecy, France Oct 2000

Preamp Species

Preamp species	Avg. Detector cap. (nF)	Layer readout	Feedback cap (pF)	RC (ns)	Total preamps
А	0.26-0.56	EM1,2, HAD	5	0	13376
В	1.1-1.5	HAD	5	26	2240
С	1.8-2.6	HAD	5	53	11008
D	3.4-4.6	HAD	5	109	8912
E	0.36-0.44	CC EM3	10	0	9920
F	0.72-1.04	EC EM3,4	10	14	7712
G	1.3-1.7	CC EM4, EC EM3,4	10	32	3232
Ha-Hg	2- 4	EC EM3,4	10	47-110	896
I	_	ICD	22	0	384
					55680

- 14+1 (ICD) species of preamp
- Feedback provide compensation for RC from detector capacitance and cable impedance
- Readout in towers of up to 12 layers
 - 0:EM1, 1:EM2, 2-5:EM3, 6:EM4, 7-10:FH, 11:CH
- 4 towers per preamp motherboard provides trigger tower (EM+ HAD) of $\Delta \eta \ x \ \Delta \phi = 0.2 \ x \ 0.2$

Lesi

BLS Card

- Use 2 L1 SCA chips for each x1/x8 gain - alternate read/write for each superbunch
- Readout time ~ 6 µs (< length SCA buffer)
- L2 SCA buffers readout for transfer to ADC after L2 trigger decision
- No dead time for 10KHz L1 trigger rate
- Trigger tower formation (0.2 x 0.2) for L1
- Rework existing power supplies
- New T&C signals to handle SCA requirements and interface to L1/L2 trigger system(use FPGAs and FIFOs)

Leslie Groer17CALOR2000 ConferenceColumbia UniversityDØ Calorimeter Electronics UpgradeAnnecy, France Oct 2000

Preamp signal shape

- Preamp output is integral of detector signal
 - rise time > 430ns
 - recovery time 15μs
 - To minimize the effects of pileup, only use 2/3 of the charge in the detector
- Shaped signal sampled every seven RF buckets (132ns)
 A Detector signal sampled every seven RF
 - peak at about 300ns
 - return to zero by about 1.2µs
 - Sample at 320ns
 - Mostly insensitive to 396 ns or 132 ns running
- BLS-Finite time difference is measured
 - Uses three samples earlier
 - Pile-up

400

800

1200

ns

Leslie Groer 18 CALOR2000 Conference Columbia University **DØ Calorimeter Electronics Upgrade** Annecy,France Oct 2000

0

Noise Contributions

- Design for
 - 400ns shaping
 - lower noise 2 FET input
 - Iuminosity of 2x10³² cm⁻² s⁻¹
- Re-optimized three contributions
 - Electronics noise: 1 x 1.6
 - . \uparrow shaping time (2µs \rightarrow 400ns) (~ \checkmark t)
 - $\cdot \,\,\downarrow$ lower noise preamp (2 FET) (~ 1/ $\!\!\!/$ 2)
 - Uranium noise: \downarrow x 2.3
 - $\cdot \downarrow$ shorter shaping time (~ \checkmark t)
 - Pile-up noise: 1 x 1.3
 - \uparrow luminosity (~ \checkmark L)
 - $\cdot ~\downarrow$ shorter shaping times (~ \checkmark t)

Comparable noise performance at 10³² with new electronics as with old electronics at 10³¹

Simulations of the W mass "benchmark" confirm that pile-up will not limit our W mass at Run II.

Leslie Groer19CALOR2000 ConferenceColumbia UniversityDØ Calorimeter Electronics UpgradeAnnecy, France Oct 2000

Estimates of Noise Contributions

Electronics Calibration

Goals

- Calibrate electronics to better than 1%
 - Measure pedestals due to electronics and Ur noise
 - Determine zero suppression limits
 - Determine gains (x1,x8) from pulsed channels
 - Study channel-to-channel response; linearity
- Commissioning
 - Bad channels
 - Trigger verification
 - Check channel mapping
 - Monitoring tool
- Oracle Database for storage
- Database used to download pedestals and zero-suppression limits to ADC boards

Electronics Calibration System

Calibration Pulser Response

- Linear response for DAC pulse height (0-65k)
- Fully saturate ADC (at DAC= 90k)

better than 0.2%

- Linearity of calibration and calorimeter electronics better than 0.2% (for DAC < 65k)
- Cross-talk in neighboring channels < 1.5%
- Uniformity of pulser modules better than 1%
- No significant noise added from the calibration system
- Correction factors need to be determined

Leslie Groer 23 CALOR2000 Conference Columbia University **DØ Calorimeter Electronics Upgrade** Annecy,France Oct 2000

Pulser Signal Shapes

Calorimeter Signal at Preamp Input

Preamp Output Shaper Output 400ns

Calorimeter Signal after Preamp and Shaper

Calibration Signal at Preamp Input

Calibration Signal after Preamp and Shaper 2 td Signal Reflection Preamp Output Signal reflection Shaper Output 400ns 400ns

- Response of calorimeter signal w.r.t. calibration signal < 1% at max. signal for variation of different parameters (cable length, Z_{preamp} , Z_{cable} ,...)
- No test beam running \Rightarrow absolute energy scale will have to be established from the data
- Maximum response time for EM and hadronic channels differ due to different preamp types. Use delays and modeling to accommodate these
- Correct pulser response for different timings and shape
- Use initial "guess" based on Monte-Carlo sampling sights and Spice models of the electronics.

24 Leslie Groer CALOR2000 Conference Columbia University DØ Calorimeter Electronics Upgrade Annecy, France Oct 2000

Determining EM/Jet Energy Scale

We have E/p this time!

Leslie Groer25CALOR2000 ConferenceColumbia UniversityDØ Calorimeter Electronics UpgradeAnnecy, France Oct 2000

Effect of added material

Leslie Groer26CALOR2000 ConferenceColumbia UniversityDØ Calorimeter Electronics UpgradeAnnecy, France Oct 2000

Optimization of Calorimeter Response

• Minimize $\Sigma(E_{true} - \Sigma a_i E_i)^2$

- ▲ a_i = layer weighting
- ▲ E_i = layer Energy
- Utilizing these energy correlations improves energy uniformity and resolution by ~10%

Leslie Groer 27 CALOR2000 Conference Columbia University **DØ Calorimeter Electronics Upgrade** Annecy, France Oct 2000

Liquid Argon Monitoring

- Each cryostat has four cells
 - ²⁴¹Am sources 5 MeV α, 0.1μCi
 - gives about 4 fC in Lar gap with 500Hz trigger rate
 - Check LAr response (constant to < 0.5% in Run I)
 - ¹⁰⁶Ru (< 3.5 MeV β, 1yr half-life)
 - ▲ one stronger source (~10⁻¹⁰ Ci) should give about 0.3Hz triggers (about 2 fC)
 - ▲ Check LAr purity (< 1% in Run I)
- Mainz group design (based on ATLAS)
 - Separate HV, preamplifier and trigger system
 - Preamplifier and differential driver give gain of about 50 → gives signals of about 0.1V
 - Shaping and ADC on receiver boards (FPGA)
 - On board collection and storage of histogram information
 - Extract data over CAN-bus

Conclusions

- Dzero is upgrading its detector
 - L.Argon calorimeter untouched
 - A Harder machine conditions and new environment (solenoid)
 - New Calorimeter Electronics
 - Improved ICD
 - New Central and Forward Preshower
 - Similar performance with
 20x more data
- Run II start in 6 months watch this space!!!

Leslie Groer29CALOR2000 ConferenceColumbia UniversityDØ Calorimeter Electronics UpgradeAnnecy, France Oct 2000