Jet Calibration @ LEP2

Franco Ligabue (ALEPH) Pisa

Physics with hadronic jets at LEP2

Hadronic jets

Franco Ligabue - Pisa

Calorimeters

Electromagnetic Calorimeter (ECAL):

Calorimeters

Electromagnetic Calorimeter (ECAL):

lead + wire-chambers

angular granularity: 74,000 towers (0.9° x 0.9°)

energy resolution (electrons):

 $\frac{S(E)}{E} = \frac{0.18}{\sqrt{E/GeV}} + 0.009$

Offline calibration:

```
    electrons from: .., . . e..,
Bhabhas at Z peak and
at high energies
    compare to track momentum
```

Total uncertainty: ~0.7%

Calorimeters

ALEPH

Hadron Calorimeter (HCAL):

iron + streamer tubes

angular granularity: 4788 towers (3.7° x 3.7°)

energy resolution (pions at normal incidence):

calibration

Offline calibration:

•muon peak . reference value (beam test)

• use to monitor time dependence (@ LEP2)

• Z peak data for module-to-module variations

Total uncertainty: ~2%

Energy flow

ALEPH Energy Flow: control analysis (LEP1)

Data/MC comparison: use of 'calibration' Z peak data

Compare data/MC jet energies vs. polar angle

Computed year-by-year: take into account detector effects such as calibration variation

A different approach: 'Upstream' corrections

Franco Ligabue - Pisa

Summary of Systematic Uncertainties on M_W from Detector Effects

	(e+.)	
ALEPH	. M I .qq (MeV)	, <mark>M qqq</mark> q (MeV)
 Tracking lepton angle bias/resolution lepton energy resolution 	8 15 8	3 - -
•Jet energy corrections (stat. err.)	6	5
•Jet energy resolution	10	7
•Calorimeter simulation	13	10
•Jet angles	4	5

Conclusions

• Calorimeters do play an important role in physics with jets at LEP2

Angular granularity + particle I D capabilities Good performance of E-flow algorithms

• Good detector simulation really important if we want to reduce systematics