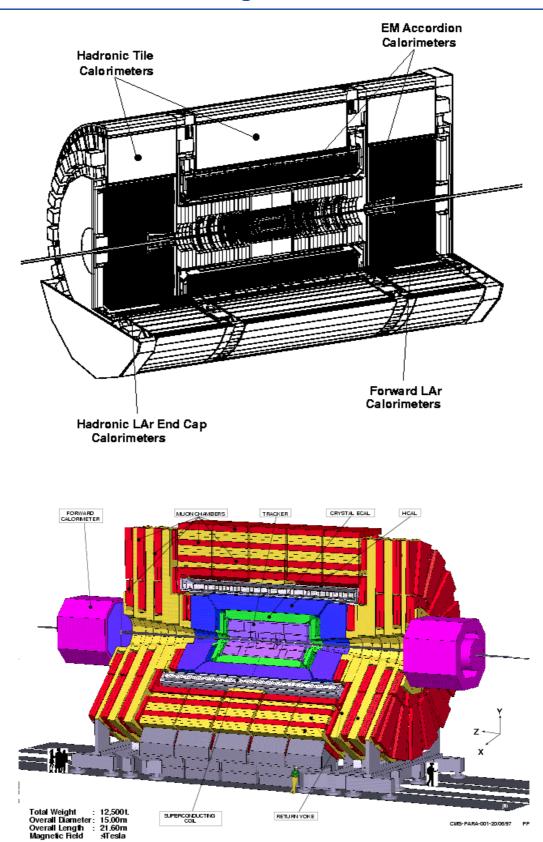
Jets and E_T^{miss} at the LHC

Role of Jets in LHC Physics

- Jet multiplicity and E_T distribution: QCD, SUSY...
- Reconstruction of resonances:
 W→jj, t→bW, Z→bb⁻, Z'→jj...
- Central jet veto & forward jet tagging

<u>Role of E_T^{miss} in LHC Physics</u>

- Missing E_T = important signal for new physics
- Used in invariant mass recontruction in decays involving neutrinos: $A/H \rightarrow \tau \tau$...
- Jets and E_T^{miss} will be used in offline analysis but also in the trigger
- Experimental conditions will change: low luminosity ⇔ high luminosity
- Emphasis will be sometime on controlling energy scale, efficiency for reconstructing low p_T jets, or good two-jet separation in boosted decays, ...


Jets and E_T^{miss} at the LHC

Outline

- ATLAS and CMS calorimetry
- Jet: reconstruction, algorithms, reconstruction of resonances, trigger
- τ jet reconstruction, trigger
- E_T^{miss} reconstruction and trigger
- Forward jet tagging, low p_T jet veto

Presentation on behalf of ATLAS & CMS collaborations

Jets and E_T^{miss} at the LHC

ATLAS and CMS calorimetry

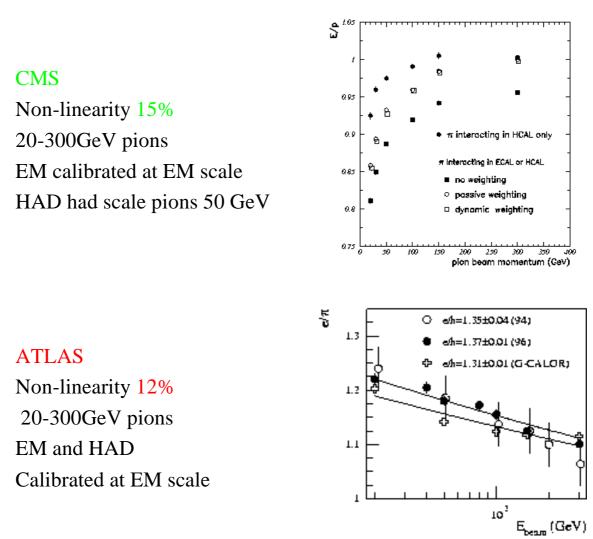
Requirements on Calorimetry

- Good η coverage: up to about $|\eta|=5$ for E_T miss resolution, forward jet tagging
- Hermiticity: non pointing "cracks" to avoid tails from badly reconstructed jets
- Thickness: avoid tails in energy deposit for high energy pions: >~ 9 λ_{int} to reduce punch-through in muon detector
- Granularity: adapted to hadron shower size $\Delta\eta x \Delta \phi = 0.087 \times 0.087$ CMS $\Delta\eta x \Delta \phi = 0.1 \times 0.1$ ATLAS
- Longitudinal segmentation: EM calo + optimized segmentation of hadronic compartment

ATLAS and CMS calorimetry

Longitudinal segmentation: Cryo \mathbf{ps} **ATLAS:** EM Had Had Had barrel 1 2 3 1,2,3 5λ 2.3X01.2 λ 0.4 λ 1.3 λ 1λ 24X0

EM: Pb/LAr HAD: Sc/Fe (barrel); Cu/Lar (endcap) Forward: Cu/LAr + W/LAr


Had 1

EM: PbWO4 Crystals HAD: (Sc/Cu) (barrel,endcap) Forward: Fe+quarz fibers

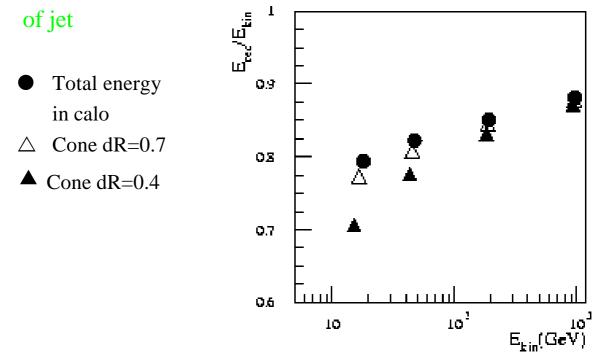
ATLAS and CMS calorimetry

CMS and ATLAS: EM and HAD compartments both non-compensated calorimeters CMS: HAD e/h≅1.4 ; e/h(EM)>>e/h(HAD) ATLAS: HAD e/h ≅1.35 ; e/h(EM)>>e/h(HAD)

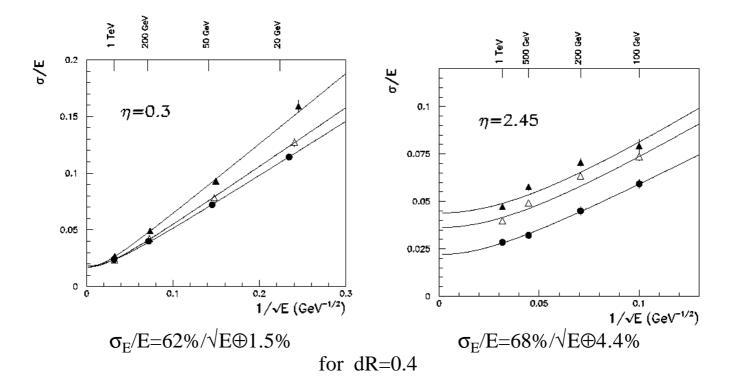
resolution, linearity depend on algorithm for energy reconstruction CMS: $E_{tot}=E_{EM}+\alpha \ x \ H_1+H_2+H_3$ $\sigma_E/E=122\%/\sqrt{E\oplus5\%}$

ATLAS: $E_{tot} = \alpha \times E_{EM} + \beta \times E_{EM}^2 + \gamma \times E_{HAD} + \delta \times \sqrt{(E_{HAD1} * E_{EM3})}$ $\sigma_E / E = 50\% / \sqrt{E \oplus 3.4\% \oplus 1./E}$ noise cut at 2σ cone dR=0.3

From parton to reconstructed jet

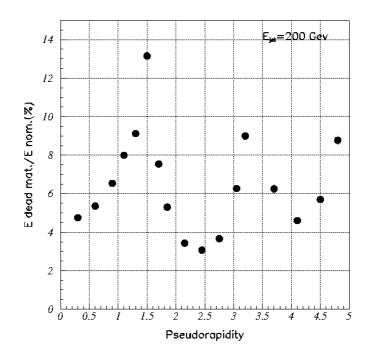

• Factors related to physics

- Fragmentation
- Initial State Radiation, Final State Radiation
- Underlying Event
- Minimum bias (ATLAS high luminosity)
 0.5 GeV in tower ΔηxΔφ=0.1x0.1
 3.5 GeV (14 GeV) in cone of dR=0.4 (0.7)

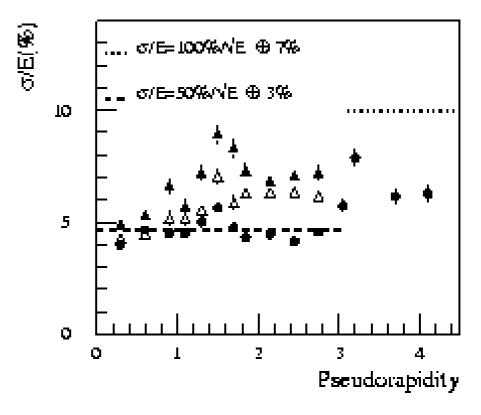

- Factors related to detector performance
 - Electronic noise
 ATLAS: 200 MeV in tower ΔηxΔφ=0.1x0.1
 0.7 GeV (1.4 GeV) in cone of dR=0.4 (0.7)
 CMS: 150 MeV in tower ΔηxΔφ=0.087x0.087
 - Magnetic field:
 p_T cutoff: 0.5 GeV ATLAS, 0.9GeV CMS
 - Different response to neutral and charged component (non-linearity)
 - Lateral shower size, granularity (out of cone loss, twojet separation, τ jet identification)
 - Dead material and cracks
 - Longitudinal leakage (very high p_T jets)

⁽el. noise included)

Different response to neutral and charged component



Calorimeter resolution (w.r.t particle energy in cone)



Dead material

and cracks

Resolution jets E=200 GeV

00 00 30 QeV 00 GeV 50 0eV 40 0eV Contribution to resolution 0.2 ЯE from "cone size", Intrinsic fragmentation Calorimeter 0.15 Total magnetic field ₽ \oplus 0. L Ó contribution from O 0.05 ISR,FSR, underlying event 0 example of fixed cone 0.05 0. L 0.2 0.15 $1/\sqrt{E_{beam}}$ (GeV) 1/2₁ Z⁰+jet events 200 GeV 50 GeV ₹ 0.3 σ/Ε 0.2 Minimum bias dR=0.4 0.1 0 0.1 0.2 0.3 $1/\sqrt{E}$ (GeV^{-1/2})

 $\sigma_E / E = 62\% / \sqrt{E \oplus 1.5\% \oplus 4.7/E}$ min.bias + el.noise (1.7 el.noise only)

Jet Algorithms

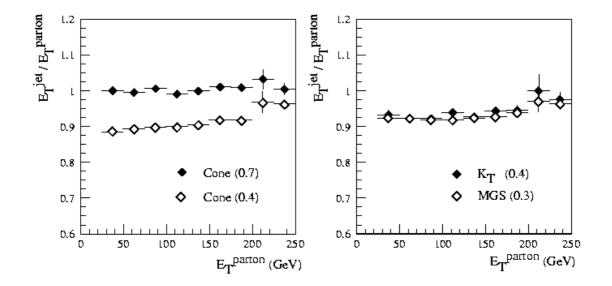
- Jet algorithms: two basic approaches, many possible variant
 - Cone algorithm: seed + cone iteration of cone direction, jet overlap & energy sharing,...
 - Clustering algorithm (QCD inspired):
 pairing of "particles" (calorimeter towers) starting from "closest" particles

stop at fixed jet multiplicity or a certain "size" ...

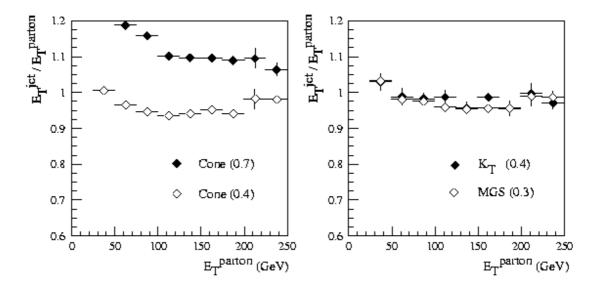
 different energy bias vs ET for different algorithms from physics

pile-up introduces a luminosity dependent bias

Å

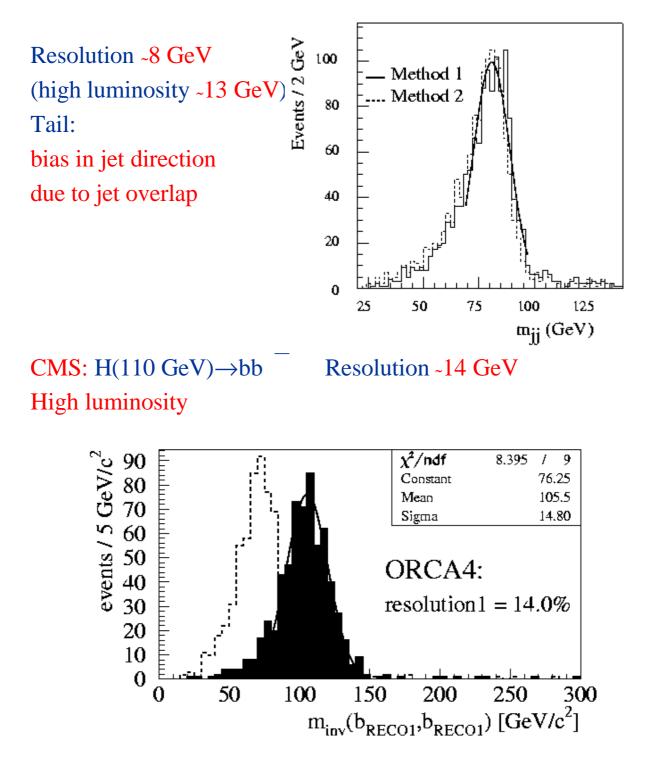

experimental effects: detector non-linearity, shower size effects depend on particle composition and size of jet

- Choice of algorithm will depend on physics channel and luminosity conditions some examples:
 QCD jet multiplicity study at low luminosity or high p_T W→jj reconstruction
- Jet energy calibration will be a complex issue because of the combination of physics + detector effects.
 In-situ physics processes like Z⁰+jet, W →jj


Jet Algorithms

different energy bias vs ET for different algorithms different at low and high luminosity Particle level study with W(jj)+j events

No minimum bias added



High luminosity pile-up

Reconstruction of resonances

ATLAS: mid p_T W: ~120-150 GeV

Jet Trigger

low p_T jet cross-section $d\sigma/dp_T \sim 1/p_T^3$ sharpness of efficiency curve is important not to be dominated by lower p_T jets

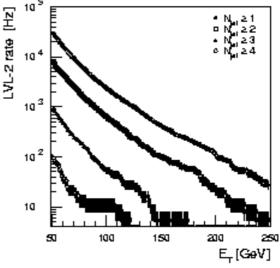
LvL1:

ATLAS: 2x2 cluster (0.2x0.2) moved by $0.2 \Rightarrow \text{local maximum}$ E_T jet measured in window (2x2; 3x3; 4x4) programmable, optimum = f (E_T ,luminosity) CMS: 4x4 cluster (0.348x0.348) moved by 0.348 \Rightarrow local max.

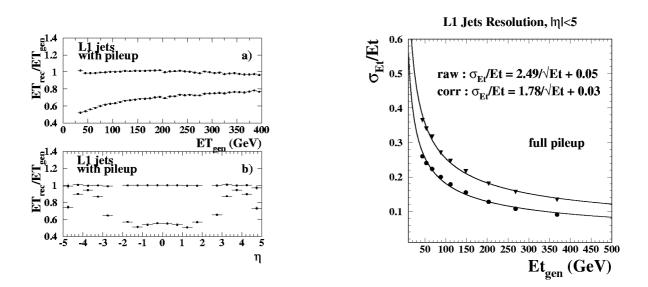
 E_{T} jet measured in window 12x12

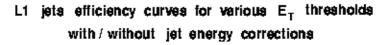
Window 0.4 x 0.4 Jet element/Slide 0.2 x 0.2 De-cluster/Rol 0.4 x 0.4, overlapping

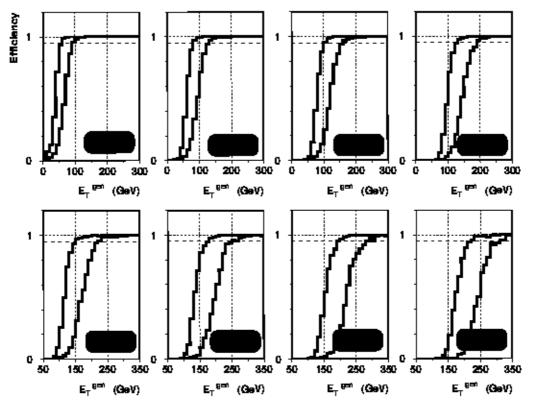
Window 0.6 x 0.6 Jet element/Slide 0.2 x 0.2 De-cluster/Rol 0.4 x 0.4, overlapping


De-cluster/Rol can be in 4 possible positions Window 0.8 x 0.8 Jet element/Slide 0.2 x 0.2 De-cluster/Rol 0.4 x 0.4, overlapping

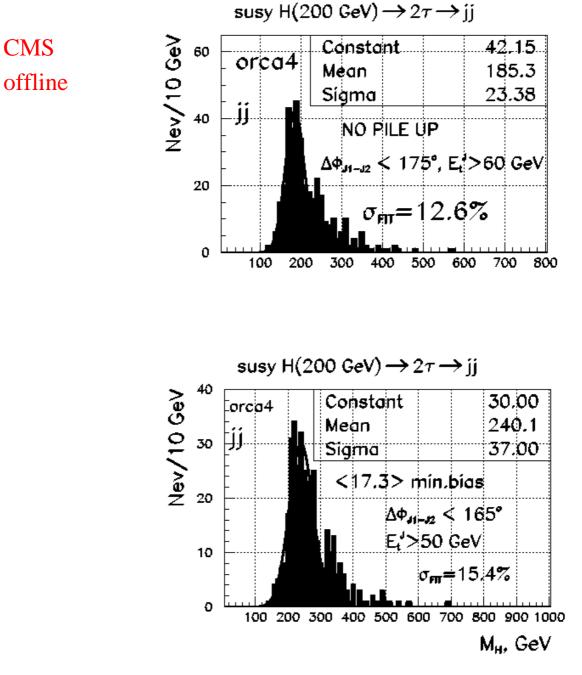
De-cluster/Rol must be in centre position (to avoid 6x6, and 2 jets/window)


LvL2: apply jet algorithm in window 1.0x1.0 improved calibration


To achieve final 25 Hz


- 1j 360 GeV
- 3j 150 GeV
- 4j 100 GeV

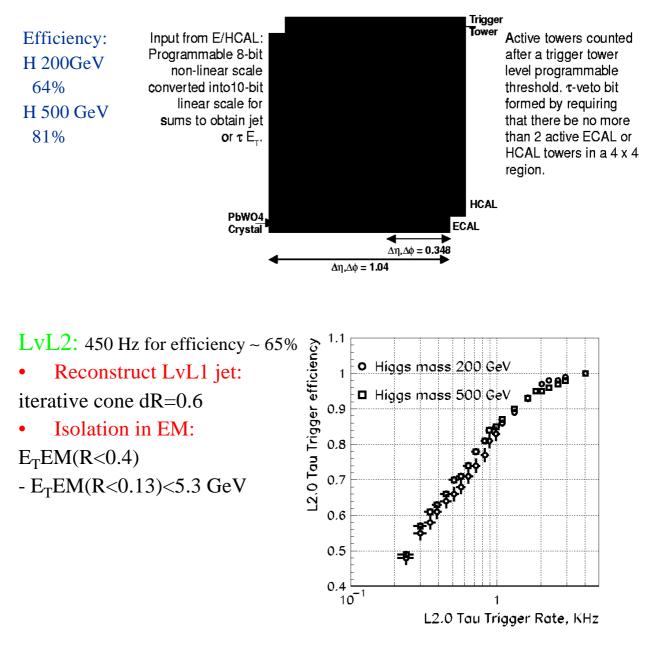
Jet Trigger: CMS Level1



τ jets: A/H \rightarrow ττ (Z \rightarrow ττ), W \rightarrow τυ

τ jet identification:

Narrow, isolated jet associated to 1 (3) track(s) ATLAS: QCD jet rejection ≈ 100 for τ efficiency $\approx 50\%$ Final state with τ jet:


 τ direction from decay products + p_Tmiss vector

τ jets: A/H \rightarrow ττ (Z \rightarrow ττ), W \rightarrow τυ

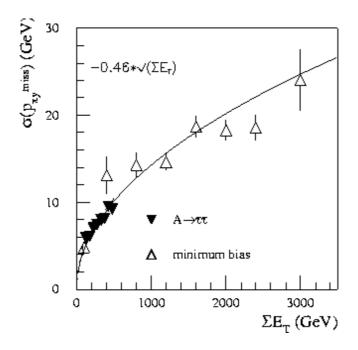
- ATLAS: single $\tau + E_t^{\text{miss}} (\text{low } p_T W \rightarrow \tau \upsilon)$
- CMS: single, double τ trigger (A/H $\rightarrow \tau \tau$)

Example: CMS trigger chain (High Luminosity) LvL1: 4kHz for 1 t (p_T >80 GeV); 2 t (p_T >50 GeV);

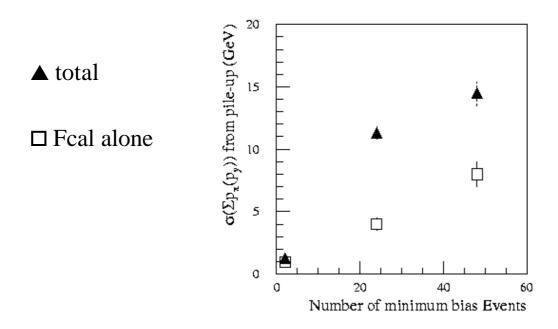
LvL3: one isolated track reconstructed in Pixel detector (under study)

E_T^{miss} Reconstruction

- p_T^{miss} vector for invariant mass reconstruction: A/H $\rightarrow \tau\tau \dots \Rightarrow$ resolution important
- Large E_T^{miss} = signature for new physics (SUSY,...) \rightarrow minimize tails from fake E_T^{miss} from instrumental effects like "cracks" (badly measured jets)


 $p_{X,Y}^{miss}$ reconstructed from the cell (tower) energies

Important factors (ATLAS study with A /H $\rightarrow \tau\tau$)

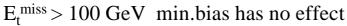

- Calorimeter coverage: needs coverage up to |η|≈5
 Particle level σ(p_{X,Y}^{miss}) 2.3 GeV 7 8.3 GeV |η|≈5⊻|η|≈3
- Calorimeter resolution: contribution depends on |η|
 P. L. σ(p_{X,Y}^{miss}) 2.3 GeV *¬* 8.3 GeV (fully simulated) barrel (5 GeV) endcap (4 GeV) forward (3 GeV) because <E_T> decreases
- Calorimeter calibration: important to correct for noncompensation (low p_T particles)
- Electronic noise: 200 MeV in tower 0.1X0.1 1.5 σ cut on noise : σ ($p_{X,Y}^{miss}$) 8.3 GeV **7** 9 GeV

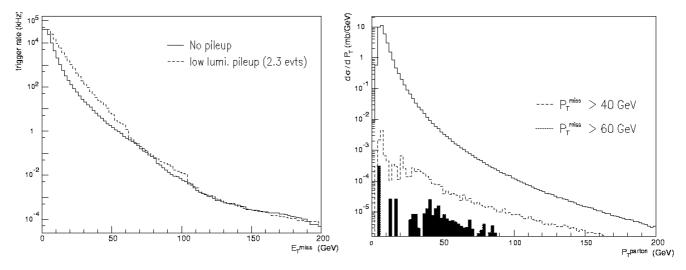
E_T^{miss} Reconstruction

 $\sigma(p_{X,Y}^{miss}$) versus total transverse energy in the calorimeters

Contribution to $\sigma(p_{X,Y}^{miss})$ from min.bias events E_T tower cut > 1 GeV

E_T^{miss} trigger

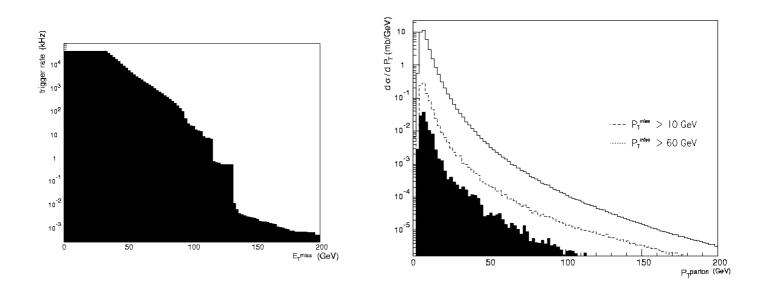

- CMS: LvL1 uses 4x4 towers ($\Delta\eta x \Delta \phi = 0.348 \times 0.348$) Least significant bit : 1 GeV E_T
- ATLAS: LvL1 uses 2x2 towers ($\Delta\eta x \Delta \phi = 0.2x0.2$) Least significant bit : 1 GeV E_T ADCsaturation @ 256 GeV

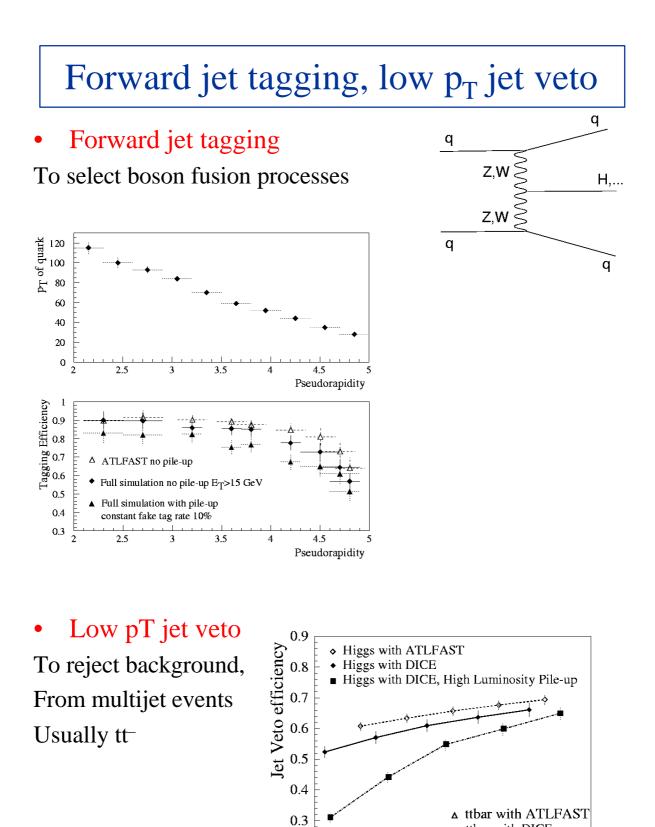

- LvL3: recalculate E_T^{miss} with fine granularity, better calibration constants
- E_T^{miss} trigger used in conjunction with jet and tau trigger
- inclusive E_T^{miss} : cut determined by bandwitdh allocated to that trigger

E_T^{miss} Reconstruction

LvL1 inclusive E_T^{miss} rate dominated by QCD dijet + pile-up Low luminosity

 $E_t^{miss} < 60 \text{ GeV}$ min.bias increases rate by factor 5




High luminosity

Rate increases by a factor 10^3 at 100GeV

10 at 200 GeV

CALOR2000 M.Bosman (IFAE/Barcelona)

12/10/00

15

20

0.2

0.1

0 E 10

40

ttbar with DICE

30

35

Threshold (GeV)

25

Conclusions

A lot of interesting physics with jets, τ -jets and p_T^{miss}

Jet energy calibration will be a challenging and crucial task There are physics and experimental effects at play They depend on the algorithm, the luminosity conditions ... Jet trigger: trigger rate dominated by sharpness of threshold curves

<u>t-jets</u> are identified as narrow and isolated jets with 1(3) pointing tracks. They can be triggered on. Resonances decay to $\tau\tau$ are reconstructed combining τ -jets with p_T^{miss} vector

 $\underline{\mathbf{E}}_{\underline{\mathbf{T}}}$ miss is reconstructed with good precision thank's to the good coverage and hermiticity of the detectors.

Calorimeter calibration important

High luminosity pile-up deteriorates the resolution significantly