Calor2000 October 12, 2000

Review of Jet Clustering at Tevtron

Anwar Ahmad Bhatti The Rockefeller University

Run I Experience:

- Snowmass Accord
- Cone Clustering algorithm
- k_T clustering
- Energy calibration/Jet Resolution
- Underlying Event Subtraction

Run II Workshop Proposal:

- Problems with cone algorithms
- Requirements for good clustering algorithms
- Algorithms
 - Seedless Cone Algorithm
 - Mid-Point Cone
 - $-k_T$ Clustering
- Some preliminary comparison

Why do we need better clustering?

QCD is well established.

- Jet Physics
 - Measure parton distribution functions
 - Test various calculation techniques (NNLO calculation, Resummation)
 - Estimate non-perturbative effects/background to new physics
 - Angular distributions
 - Multi-Jet States
 - Jet Fragmentation Studies
- Mass Reconstruction
 - Hadronic W/Z reconstruction
 - Top Mass measurement
 - Higgs Search

Question is how accurately can we do it?

CDF Energy Calibration

- Use test-beam data for single particle response for high P_T
- $p\bar{p}$ data for low momentum particles
- Charged Particle multiplicity and momentum distribution from CDF data
- Assume that EM calorimeter is linear.
- Convolute particles in a jet with single particle response
 - to determine jet response.

CDF Jet Energy Response

Jet resolution is proportial to Jet E_T

Snowmass Algorithm

- Associate a 4-vector with Each particle/tower
- Find a cone such that jet centroid is aligned with geometric center.
- Each particle statisfies

$$i \in C$$
 : $\sqrt{(\eta^{i} - \eta^{C})^{2} + (\phi^{i} - \phi^{C})^{2}} \leq R.$

In the Snowmass algorithm a "stable" cone (and potential jet) satisfies the constraints

$$\eta^C = \frac{\sum_{i \in C} E_T^i \eta^i}{E_T^C}, \quad \phi^C = \frac{\sum_{i \in C} E_T^i \phi^i}{E_T^C}$$

(*i.e.*, the geometric center is identical to the E_T -weighted centroid with $E_T^C = \sum_{i \in C} E_T^i$).

•
$$E_T^J = \sum E_T^i$$

•
$$\eta^J = 1/E_T^J \sum E_T^i \eta^i$$

•
$$\phi^J = 1/E_T^J \sum E_T^i \phi^i$$

Clustering	 Clustering Make tower list with E_T>100 MeV. Order PreCulster in E_T Order PreCulster in E_T Add towers to a precluster if within ΔR < 0.7 Iterate such that tower list in cluster is stable. Iterate such that tower list in cluster is stable. Merging and Splitting E_T order clusters do i=1,number of clusters do i=1,i-1 e do i=1,i-1 Find the common towers. If common E_T>75%, merge. Else assign common towers to closer cluster in iterative fashion. Calculate jet parameters from tower list. 	
CDF Jet	 PreClustering Join towers in forward/plug region to make 24 segments in \$	

Ad-hoc Clustering Parameter in theory (R_{sep})

- Experimental clustering has overlapping cones and thus splitting merging.
- Introduce to mimic splitting/merging in data.

Successful in describing energy distribution within a jet at the cost of another parameter in theory which can be tuned.

NLO Three Jet Production hep-ph/p610433

- Jet cross section depends on the jet definition.
- Upto four partons in final state.
- Need a resolution parameter to define a parton.
 - Mass of two parton $< s_{min}$, Unresolvabe, treat as single parton
- Cross Section should not depend on s_{min} .

Desirable Features of clustering algorithm

- Infrared Safe
- Collinear Safe
- Invariance under boosts
- Boundary Stability
- Order Independence
- Straightforward Implementation

- Detector Independence
- Minimization of resolution smearing and angle biases
- Stability with luminosity
- Efficient use of computing resources
- Maximum Reconstruction Efficiency
- Ease of calibration
- Ease of use
- Fully specified

Clustering Algorithms for Run II

Recommendations

- Seedless Cone Clustering
- Midpoint Cone Clustering
- k_T algorithm

Implementation CDF

- JetClu (Run I cone algorithm)
- k_T Clustering
- Seedless Cone Clustering
- Midpoint Cone Clustering

D_{\bigcirc}

- k_T algorithm
- Seedless Cone Clustering
- Midpoint Cone Clustering

MidPoint Cone Clustering

To remove the sensitivity to soft radiation, add additional seeds at positions given by $p_i + p_j$, $p_i + p_j + p_k$ etc.

 s_{min} dependence of DIS^mDIJET cross section at NLO.

- NLO $p\bar{p}$ 3-jet production is too slow.
- The cross section diverges as $\log(s_{min}/Q^2)$ for "no center seed" clustering.
- In data
 - Generate E_T order tower
 - Find protojets around towers with E_T > threshold
 - Generate midpoints from list of protojets
 - Find protojets around midpoints
 - Goto split/merge stage

k_T Algorithm

Jet Parameter Definitions

The cone algorithm starts with a cone defined in E-scheme variables as

$$i \in C$$
 : $\sqrt{(y^i - y^C)^2 + (\phi^i - \phi^C)^2} \le R.$ (1)

where for massless towers, particles, or partons $y^i = \eta^i$. The E-scheme centroid corresponding to this cone is given by

$$p^C = (E^C, \mathbf{p}^C) = \sum_{i \in C} (E^i, p_x^i, p_y^i, p_z^i) ,$$
 (2)

$$\bar{y}^C = \frac{1}{2} \ln \frac{E^C + p_z^C}{E^C - p_z^C}, \quad \bar{\phi}^C = \tan^{-1} \frac{p_y^C}{p_x^C}.$$
 (3)

A jet arises from a "stable" cone, for which $\bar{y}^C = y^C = y^J$ and $\bar{\phi}^C = \phi^C = \phi^J$, and the jet has kinematic properties

$$p^J = (E^J, \mathbf{p}^J) = \sum_{i \in J=C} (E^i, p_x^i, p_y^i, p_z^i), \quad (4)$$

$$p_T^J = \sqrt{(p_x^J)^2 + (p_y^J)^2} ,$$
 (5)

$$y^J = \frac{1}{2} \ln \frac{E^J + p_z^J}{E^J - p_z^J}, \quad \phi^J = \tan^{-1} \frac{p_y^J}{p_x^J}.$$
 (6)

PreClustering

• Order independence (same results for

partons, particles, towers)

- Detector independence
- CPU

CDF Preclustering

- CDF Run II calorimeter has 1536 towers.
- Each tower with $E_T > 100$ MeV is precluster.

DØPreclustering

- ~ 45000 cells, ~ 6000 towers.
 - 1. Identify each cell with a 4-vector
 - 2. Removes celles with $p_T < -500$ MeV.
 - 3. Add cell within a tower using 4-vector addition
 - 4. PreCluster towers with $\Delta R < 0.2$
 - 5. Redistribute negative energy preclusters to neighbours
 - 6. Redistribute preclusters with $p_T < 200$ MeV to neighbours

Jet50: JetClu vs. MidPoint (R_{cone} =0.7): E_{T} and n_{jets}

Jet50: JetClu vs. MidPoint (R_{cone}=0.7): Leading Jets

tt: JetClu vs. MidPoint (R_{cone} =0.7): E_{T} and n_{jets}

tt: MidPoint vs. Seedless (R_{cone}=0.7): Leading Jets

Conclusions

- Lot of progress in understanding jet clustering issues.
- Detailed clustering algorithms have been specified.
- Progress in energy calibration of k_T jets.
- The seedless algorithm is not two slow. Preclustering is needed for DZero.
- Ready to compare data with NNLO calculations
- Can we reach 1% accuracy in PDF? Still open.