Studies of

Jet Energy Resolution

A. Bocci, S. Kuhlmann, <u>S. Lami</u>, G. Latino (for the CDF Collaboration)

...to improve CDF-II 2-jet Mass Resolution

1. Physics Effects:

• $W \rightarrow jj$ Simulation

- 2. <u>Detector Resolution:</u>
 - MC + Run I data (γ -jet, 2-jet)

Full CDF detector (not only calorimetry) to correct at "tower level" rather than at "jet level"

Physics Effects

Particle level study of a typical peak-hunting case, $W \rightarrow q\overline{q}$. Four main physics effects:

 \rightarrow Natural Width of the W

- Underlying event fluctuation (Mainly gaussian contribution)
- → <u>Final State Radiation</u> (FSR)
- ➔ Misidentified jets from Initial State gluon Radiation (ISR)

The FSR study

In order to reduce low-mass tail, we investigated:

- Solution Algorithm Effects: "Cone", " K_T " algorithms compared and found equivalent (for this physics).
- Image Sector Sector
- **Extra Jet Cuts**: Third jet cuts $(E_T > 8 \text{ GeV})$ improve S/B but a fraction of signal is lost.

Improving Detector Resolution

~ 2/3 of jet energy carried by charged particles $(\pi^{\pm}, K^{\pm}, ...)$ but jet algorithm makes no use of Tracking information (CTC).

<u>CTC:</u> $\Delta p/p \simeq 0.002 \ p$ <u>CAL:</u> $\Delta E/E \simeq \frac{0.5}{\sqrt{E}}$

Complementary Info from CTC & CAL

R

PYTHIA Study of the Potential Improvement:

Monitoring how resolution changes from a *perfect* detector condition to real detector ($\gamma + jet$ MC events)

	$P_T^{\gamma} > 15$	$P_T^{\gamma} > 50 { m ~GeV}$
Perfect Detector	4.8%	1.9%
Perfect but 350 MeV cut	5.1%	2.3%
Perfect ID	7.1%	3.2%
Smear Tracks in CCAL	16%	8.8%
Detector Resolution	19%	11%

Solution Potential $\times 3$ improvement, but achieving *Perfect ID* is difficult (for overlapping π^0 , neutrons,...)

Classification Method

Flag towers depending on which kind of particles (γ 's or charged) plunge in.

- Track Tower: An associated track but not a Shower Max cluster (i.e. overlapping π^0)
- <u>Gamma Tower</u>: A Shower Max cluster but not an associated track
- <u>Mixed Tower</u>: Both track and CES cluster
- Leakage Tower: Neither, and is adjacent to other energetic tower(s)
- Not Assigned: Neither and isolated

Tower Energy assignment

Energy assignments follow naturally:

Track Tower	Track P_T	
Gamma Tower	EM Calorimeter	
Mixed Tower	Combination:	
$\sum P_T^{trk} + (CEM - CEM_{trk}) + k \cdot HAD$		
Leakage Tower	0	
Not Assigned	$(EM + HAD) \times$ scale factor	

Example from Run I γ + jet data:

$P_{T_{\xi}}$ sensitive to detector resolution + gluon radiation

Assuming soft effects are isotropic in azimuth, we can remove that contribution from σ_{ξ} in quadrature obtaining an effective Detector Resolution σ_D

$$\sigma_D = \sqrt{\sigma_\xi^2 - \sigma_\eta^2}$$

Jet Energy Resolution

Algorithm parameters as a function of the (raw) Jet P_T

Conclusions

We studied Physics and Detector effects and developed a new method to correct for low energy non-linearities of the Central Calorimeter response.

Much more detector information available:

- $R \phi$ view of Shower Max
- Left-Right PM balance for EM/HAD
- Preshower
- Crack Chambers

We plan to extend it to Plug Calorimeter.
It will be part of official CDF-II software, resulting in 1 correction word/tower,
Image: will be performed on the set Algorithm