Measurement of

Absolute Jet Energies

in the H1 Liquid Argon Calorimeter

- Tracks + clusters combination
- Absolute calibration
- Benefits to physics measurements

 $pt_{bal} = pt_{had} / pt_{da}$

for hadronic energy measurement

 $\mathbf{E} = \mathbf{E}_{\mathbf{LAr}} + \mathbf{E}_{\mathbf{tracks}}$

Measurement of tracking system better than the LAr measurement for low momentum.

- A track with pt < 2 GeV is extrapolated in the LAr
- Energy in a cylinder with r = 25(50) cm in the EM (HAD) section around the track is assigned.

With a Data/MC calibration

★ Data/MC within 2% ★ ... but : $pt_{bal}^{mean} \sim 0.943$...

\rightarrow Absolute calibration :

 $\implies \text{Aims to bring } pt_{bal}^{mean} \rightarrow 1.$ for exclusive states analyses (New physics , W analyses ...) Procedure to obtain corrections

- Data and MC calibrated separatly
- Sample : high q^2 (1+1) jets events
- pt_{da} as reference :

• In 8 θ_{jet} bins, the pt balance is computed in several pt_{da} bins.

→ Fits with exponential functions:

 $\mathrm{F}(heta_{\mathrm{jet}},\mathrm{pt}_{\mathrm{da}}) \;=\; \mathrm{A}_{ heta} \;\left[\; 1 \;-\; \exp\left(-\mathrm{B}_{ heta} - \mathrm{pt}_{\mathrm{da}}/\mathrm{C}_{ heta}
ight)\;
ight]$

Procedure to apply corrections

For a given quantity \mathbf{q}_{jet}^{in} :

Iterative procedure :

 \star The initial pt_{jet}^{in} is first corrected

$$\mathrm{pt'_{jet}} = \mathrm{pt^{in}_{jet}} / \mathrm{F}(\theta_{\mathrm{jet}}, \mathrm{pt^{in}_{jet}})$$

★ The final corrections are calculated at this corrected pt'_{jet}

$$\mathbf{q_{jet}^{corr}}~=~\mathbf{q_{jet}^{in}}$$
 / $\mathbf{F}(m{ heta}_{jet},\mathbf{pt'}_{jet})$

(1+2) jets events

Exclusive calibration checks.

Denent in 5 jets measurement

 $(~{\rm pt}_{\rm jet}^{1,2,3}~>25,15,10~{\rm GeV}~)$

Single Top Monte Carlo ANOTOP (hadronic channel)

Conclusion

- Calibration applicable for any high Q^2 event samples
- Corrections are within 2% independent of :
 - the selection of event samples
 - the number of jets in the events
 - the jet algorithm used
- Method initially devoted to the absolute calibration of high pt jets (new physics or exclusive states)

 \rightarrow works for inclusive studies as well