Evaluation of a Combined Array-Planar Crystal for Gamma-ray Scintillation Imagers

R.Pani¹, R.Scafè², R.Pellegrini¹, A.Soluri³, N.Burgio², C.Ciavola², M.N.Cinti¹, L.Indovina¹, G.De Vincentis¹, F.Garibaldi⁴, F.Cusanno⁴, G.M.Urciuoli⁴ and E.Cisbani⁴

¹ Department of Experimental Medicine, University of Rome "La Sapienza", Rome, Italy
 ² ENEA, C.R. Casaccia, Rome, Italy
 ³ Institute of Biomedical Technologies, CNR, Rome, Italy
 ⁴ Laboratory of Physics, JSS, Pame, Italy

⁴ Laboratory of Physics, ISS, Rome, Italy

Hamamatsu PSPMT Family (crossed wire anode)

R3292 (5 inch)

R6970 (8 inch)

R5900 (1 inch)

SPEM Single Photon Emission Mammography A new scintigraphic technique based upon a small FOV dedicated gamma camera

The main advantages of this detection system with respect to Anger camera are the compactness and the light weight

SPEM detection system

SPEM detection head

SPEM Single Photon Emission Mammography

SPEM detection system allows to perform scintigrafic breast projection as Rx mammography

Uncompressed Breast

Compressed Breast

Cranio Caudal projection

Spatial resolution in PSM

Spatial resolution in SPEM

Resolution vs. Source-Detector Distance

PSM (Prone Scinti Mammography) by using commercially available Gamma Camera

Proper positioning in PSM

Prone scintimammography is the only useful view allowed for a patient

SPEM Single Photon Emission Mammography

^{99m}Tc Sestamibi scintimammography: Right Breast Carcinoma 13 mm sized

a: SPEM Camera scan clearly shows the lesion as an inhomogeneous area of increase uptake of tracer (arrow)
b: The same breast imaged by commercially available Anger Camera showing the lesion as a small hot spot (arrow)

^{99m}Tc Sestamibi Scintimammography

Right Breast Carcinoma 7 mm sized

RCC uncompressed RCC compressed

a and **b** SPEM Camera imaging with breast uncompressed (a) and mildly compressed: into the red circle the lesion is shown as an area of increased uptake of tracer

c: The same breast imaged by commercially available Anger Camera: no pathological uptake is shown

d: The corresponding X-Ray mammography- the lesion is surrounded by a red circle

2 x 2 PSPMT Hamamatsu R 5900-C8

With flanges

Diagram of Multi-PSPMT camera (All dimensions in mm).

Read-out electronics and acquisition system

MP card

CsI(Na) planar crystal 55 x 55 x 3 mm³ 2 mm quartz

CsI(Tl) crystal array 3 x 3 x 3 mm³ pixel size 3 mm quartz

2 x 2 PSPMT Hamamtsu R5900-C8 Flood filed irradiation 140 keV

1 mm quartz

3 mm quartz

PSPMT R5900-C8 Hamamatsu CsI(Tl) crystal array 3 x 3 x 3 mm³ Flood filed irradiation 140 keV

5 mm quartz

Multi PSPMT Spatial Resolution

SCHEMA CAPC

COMBINED ARRAY- PLANAR CRYSTAL CsI(Na) CAPC

 $3 \times 3 \text{ mm}^2 / 0.25 \text{ mm}$ dead zone

2 x 2 PSPMT Hamamtsu R7600-C8 Individual PSPMT Energy Response from Flood Field Irradiation at 140 keV

CsI(Na) CAPC Spatial Resolution – 140 keV spot irradiation

Position(Pixels)