A Luminosity Spectrometer for the ZEUS Experiment

Stathes Paganis
Columbia University, Nevis Laboratories
On Behalf of the ZEUS Collaboration.

- Measuring Luminosity at ZEUS
- The photon Calorimeter (Cracow-DESY)
- The Luminosity Spectrometer (Columbia-DESY)
- The 6-meter Tagger (DESY-Hamburg University)

ZEUS (HERA)

Software: SDRC-IDEAS level VI.i Performed by: Carsten Hartmann Status: October 1993

HERA Upgrade Schedule

Shutdown: September/00 (L $\simeq 2 \times 10^{31} cm^{-2} s^{-1}$) Turn On : August/01 (L $\simeq 7.5 \times 10^{31} cm^{-2} s^{-1}$)

Required Luminosity Measurement Precision

• Diffraction Group: 3%

• Heavy Flavor Group: 1%

• Hadronic Final States: 2%

• Structure Functions and EW Group: 1-2%

• Exotics Group: 5%

MEASURING LUMINOSITY

The cross-section for the process $ep \to ep\gamma$ is taken from the Bethe-Heitler formula:

$$\frac{d\sigma}{dE_{\gamma}} = 4\alpha r_e^2 \frac{E_{e'}}{E_{\gamma} E_e} (\frac{E_{e'}}{E_{e'}} + \frac{E_{e'}}{E_e} - \frac{2}{3}) (ln \frac{4E_p E_e E_{e'}}{Mm E_{\gamma}} - \frac{1}{2}), \tag{1}$$

Cross-section (top plot) and photon density dN/dE_{γ} (bottom) for the process $ep \rightarrow ep\gamma$.

Problems associated with the Lumi Measurement after the HERA upgrade

- Direct and Scattered Synchrotron Radiation
- Bremsstrahlung Photon Pile-up
- Bremsstrahlung Photon Acceptance
- Energy Scale Calibration

Lumi Spectrometer Characteristics

- Small systematic errors due to pile-up. With acceptance $A \simeq 3\%$, the chances of confusion from a second photon are reduced by two orders of magnitude.
- Accurate knowledge of the acceptance ($\Delta A/A < 1\%$) in a window of width $\Delta E_{\gamma} \simeq 3 GeV$, as determined with the use of the 6m tagger.
- No radiation damage issue due to synchrotron radiation.
- Small errors from energy scale uncertainty due to the good BPC resolution and clean spectrum end point.
- Good photon beam profile reconstruction at the exit window. Shifts of the profile mean values smaller than ≈ 1mm can be measured every 10 seconds.

Figure 5. Drivainte atmestere of the DDC

BPC specification	BPC performance
Depth	$24X_0$
Moliere radius	13mm
Energy resolution	$17\%/\sqrt{E}$ (stochastic term)
Energy scale calibration	±0.5% -> 0.3%
Energy uniformity	±0.5%
Linearity	≤ 1%
Position resolution	< 1mm
Time resolution	< 1ns

The Beam Pipe Calorimeters (BPCs) have been used during the last 5 years to measure ep cross sections at very low Q^2 .

- 1. We Assume $\int BdL = 0.3$ Tm for standard dipole.
- 2. We optimize L keeping 10cm separation.

The spectrometer acceptance A is given by the formula:

$$A = A_{geom} \cdot A_{conv} \cdot A_z \tag{7}$$

 A_{geom} is the acceptance of the photon beam exit window (90-95%), A_{conv} is the conversion rate ($A_{conv} \simeq 10\%$), and A_z describes the $z = E_e/E_\gamma$ dependent part of the acceptance.

MEASURE SPECTRO (Friday) ACCEPTANCE USING GME:

6-m Tagger Acceptance for Bremsstrahlung

Figure 6: Acceptance of exit window for bremsstrahlung electrons (top) and positrons (bottom).

Photon Energy Spectrum Distribution as measured by the lumi spectrometer

Solid Line: Spectrum of coincidences without detector resolution folded. Dash line: Spectrum of coincidences with detector resolution folded.

Photon Beam Profile Reconstruction

The position of the photon (projected to the BPC Z location) is approximated as the energy-weighted position of the two electrons as measured in the BPC.

$$Y_{hit} = \frac{E^{+}BPC^{+} + E^{-}BPC^{-}}{E^{+} + E^{-}} \tag{8}$$

Systematic Errors

- 1. Energy Scale and resolution uncertainties in the cross section determination.
- 2. Theoretical cross section error.
- 3. Multiple events correction errors (pileup).
- 4. Acceptance correction errors.

Error Type	$L = 7.10^{31} cm^{-2} s^{-1}$
Multiple event correction	$\leq 0.5\%$
egas bgnd subtraction	≤ 0.5%
Total Acceptance error	$\leq 1.0\%$
Energy Scale errors	≤ 0.5%
Cross-section Calculation	$\leq 0.5\%$
Total systematic error	≤ 1.4%

Table 2: Systematic Error in luminosity.

Summary of Systematic Errors

The counting, thermal γ background and p-beam background errors are currently expected to be relatively low so they are not taken into account. The theoretical calculation of the cross section error was taken as 0.5%. The total systematic error is calculated by summing all errors in quadrature.

KEY POINT: escale calibration of the spectrometer. Current BPC escale resolution 0.3%. We expect to do better using the photon spectrum end point. Spectro calibration sets the 6m tagger escale error at 0.5%.

The total systematic error is expected to be below

CONCLUSIONS

The ZEUS Luminosity measurement after the HERA upgrade has two difficulties: synchrotron radiation and pile-up (two Bremss. photons per bunch crossing).

The old method can still be used after appropriate modification of the current setup: measure directly the photons using filters to block the SR and counters to correct for energy loss in the filters. The challenge for this method is the pile-up correction and energy scale calibration.

A new method will be used: luminosity spectrometer. Photons are measured indirectly by counting e^+, e^- coincidences in two small well understood calorimeters. The calorimeters are away from the SR plane and pile-up is a secondary effect. The spectrometer acceptance is measured using an independent device, the 6m e-tagger. The tagger has almost 100% acceptance in Bremss. electrons in an energy window where the spectrometer acceptance is maximized. The electron and photon energy sum equals the electron beam energy $(27.5 \, GeV)$.

Detailed calculations show that the new ZEUS luminosity monitor will measure luminosity with an accuracy better than 2%.