

CDF Endplug Shower Maximum Detector

Benn Tannenbaum

UCLA

for the CDF Collaboration

Outline

- Physics requirements
- Detector design
- Test beam results
- Installation
- Calibration
- Status
- Conclusion

Physics Requirements

- Purpose:
 - Good position resolution of electrons and photons
 - Help separate electrons and photons from $\,\pi^{0}$
 - Plug EM calorimeter has ~ 7.5 $^{\circ} \phi$ × 0.12 η segmentation
- **Design requirements:**
 - 1 pe / MIP to measure high energy electrons with resolution of 1 mm
 - < 10% variation between detector channels
 - (4 pe / MIP for sensitivity to muons)
 - Fast: read out between crossings (132 nsec)

- Scintillator strips (Bicron BC408) read out with 0.833 mm WLS fibers (Kuraray Multi-Clad Y11-350 ppm non-S type)
- Connected to clear fibers via optical connectors
- Read out with Multi-Anode Photo-Multiplier Tubes (Hamamatsu R5900-M16)

CALOR2000

- Eight 45° sectors, each with 200 5mm strips
- Strips wrapped with aluminized Mylar
- 2 layers (U and V) with 45° crossing angle
- Located behind ~6 radiation lengths of material, inside Plug EM calorimeter
- Segmented into high and low eta sections:

Eta range	Gain
$1.13 < \eta < 2.60$	5×10^{5}
$2.60 < \eta < 3.50$	1×10^{5}

Benn Tannenbaum, UCLA

CALOR2000

Benn Tannenbaum, UCLA

CALOR2000

Test Beam

- Fermilab's MT6 area
- Used 5-220 GeV positrons
- Had one 45° wedge
- Resolution calculated by

$$u = x_{\max} + \frac{E_{\max}(E_2 - E_1)}{2 E_{\max}(E_2 + E_1) - 2E_1E_2}$$

where is the strip width and E_{max} , E_1 , E_2 are the strip energies

• Meets our 1 mm resolution spec

CALOR2000

Installation

- All chambers and MAPMTs installed
- All analog electronics installed and cabled
- One octant fully instrumented
- Readout software written
- Offline calibration software written
- Database populated with 6400 × 12 constants
- Plugs mounted on the detector
- Detector in the collision hall

Calibration

- Two techniques for calibration
 - Laser flasher
 - » Shine laser on scintillator
 - » Fibers run from scintillator to single pixel on all tubes
 - » Used to monitor phototube drift
 - » Part of 'begin-run' calibrations
 - Radioactive source
 - » Co⁶⁰ pellet on a wire
 - » Can be moved along 'source tube' near detector
 - » Used to monitor pixel to pixel drift
 - » Done during shut-downs & access periods

Calibration: Source Testing

Benn Tannenbaum, UCLA

CALOR2000

Calibration: Source Testing

- Fit source run to Gaussian (UL) and exponential (UR)
 - If Gaussian, also fit constant (LL), & use as seeds for Breit-Wigner (LR)
 - If exponential, use in attenuation length calculation
- Determine relative pixel gain
- Tune high voltage values
- During run will be used to monitor long term pixel to pixel variations

CALOR2

Calibration: Source Testing

• Measured attenuation length of WLS fiber by fitting to $I = I_0 e^{-x/\lambda}$

- We can read out a quadrant
- Are tuning pedestals, calibrations, etc
- Expect remaining electronics to be completely installed before Christmas
- Taking cosmics since early September
- Commissioning run began early October

Conclusions

- Detector meets our specifications
- Detector and 1/4 electronics are installed
- We are taking data!
- We will be fully installed and calibrated in time for run
- It's an exciting time to be on CDF