A massive, fine grain scintillating fiber calorimeter for the CERN to Gran Sasso LBL project (CNGS)

E. Scapparone(LNGS - INFN) for the NOE Collaboration

The goal of the CNGS beam is the direct appearance of the n_t

Long Baseline (LBL) neutrino detector

Basic hardware

Target: vertex, tracking, particle id, energy losses.

Calorimeter: <u>Hadronic energy measurement</u> <u>Shower containment</u> µ analysis (if magnetized)

Strategy for a multi-kiloton LBL apparatus

How can we build a large mass calorimeter (few Ktons), while obtaining the required performances ?

How much can we limit the sampling fraction, the number of electronics channels, while manteining an hadronic energy resolution **s**/E~40%/E ?

Our choice was a scintillating fiber/iron calorimeter (SPACAL, CHORUS, H1,KLOE,etc.))

NOE R&D: started in '95, long R&D on SCIFI, Scintillator +WLS fibers, several read out (PMTs,HPDs, CPMs): <u>a first calo prototype (4 tons) exposed to PS T7</u>

Nowadays NOE/ICANOE in no more on the floor, but we believe this was an interesting R&D , possibly fruitful for the CALO Community

We developed 2 different options:

2) CROSSED FIBERS option (ICANOE Calorimeter)

1.9 mm diameter Polithech (POLIFI 0244-3-200)

Each cell is read out by a PMT Hamamatsu R4125 working @ G=10⁷

- High Gain
- Very good linearity (~5% @ 150 mA)
- Reasonable cost
- Good match with SCIFI emission spectrum
- 3/4 `` is ok for our fiber spot

A green LED, coupled to a optical fiber, sends light pulses to the PMT

All the 129 PMT's read out using ADC Lecroy 2249A, fast gate (170 ns) generated by four fold scintillator coincidence; DAQ with Labview ~ 130 events/spill recored

4 tons prototypwe exposed to PS test beam on Dec. 98 (Crossed Bars option)

Both the electromagnetic and hadronic energy resolution scales as $\sqrt{2}$ (since σ/E for Iron Calorimeter with $abs_{thick} > 2 \text{ mm}$ working at $E \sim 10 \text{ GeV}$ is dominated by samplig fluctuations)

GEANT 3.21 CALO Simulation

Energy(GeV)

evt. 81 Particle type ele

$$Q_{tot} = \sum_{i} (ADC_{i} - Ped_{i})$$

Calorimeter linearity for electrons and pions:

Software compensation

$$Q_{corr} = \mathbf{S} Q_i * (1 - \mathbf{K} * Q_i) \longrightarrow \mathbf{K}$$
 evaluated by data
minimizing $\mathbf{s}(Q)/Q$

In CDHS K was running with E ; in NOE Calo K is almost constant (K=0.008)

Energy resolution improvement after sotware correction:

Stocastic term improved of ~ 15%

$$E_t^X = E \sin \Theta_x \qquad \qquad \Theta_x = \frac{1}{\Sigma Q_i} \sum_{i} 2Q_i \arcsin \frac{(X_i - X_v)}{((X_i - X_v)^2 + (Z_i - Z_v)^2)^{0.5}}$$

3 GeV p

2 POSSIBLE SOLUTIONS FOR A MASSIVE , FINE GRAIN CALORIMETER HAVE BEEN STUDIED.

TEST BEAM RESULTS ON 4 TONS PROTOTYPE SHOW A GOOD CALORIMETER PERFORMANCE, WITH σ/E ~ 43%/ $\!\sqrt{}$ E , IMPROVED BY SOFTWARE CORRECTIONS TO ~ 37 % / \sqrt{E}

TRANSVERSE ENERGY RESOLUTION MEASURED IN 1 - dim, (E_T^X) : RESULTS IN GOOD AGREEMENT WITH MC..