Calibration and Reconstruction Performances of the KLOE Electromagnetic Calorimeter

P.Gauzzi, Rome University and INFN for the KLOE collaboration

IX Int.Conf.on Calorimetry in Particle Physics LAPP Annecy – 9-14 October 2000

Outline

- The KLOE experiment and the EMC design
- Reconstruction and calibration of energy
- Reconstruction and calibration of timing
- Performances on simple physics examples

THE KLOE Experiment @ DAFNE

Be beam pipe (0.5 mm thick) **Instrumented permanent magnet quadrupoles** (32 PMT's) QCAL

Drift chamber (4 m Ø × 3.3 m) 90% helium 10% isobutane 12582/52140 sense/total wires

Electromagnetic calorimeter Lead/scintillating fibers

Superconducting coil $B = 0.6 \text{ T} (\int B \, dl = 2.2 \text{ T} \cdot \text{m})$

DAFNE: e⁺e⁻ collider at **j** peak; **Ö**s = 1020 MeV

The **KLOE** goal is to measure $\text{Re}(\mathbf{e'}/\mathbf{e})$ to ~ \mathbf{O} (10⁻⁴)

KLOE CALORIMETER REQUIREMENTS

- Reconstruct K_S,K_L ® p⁰p⁰
 vertices with ~ 1cm resolution
- Discriminate K_L ® p⁰p⁰ from K_L ® p⁰p⁰p⁰p⁰
- Fast for triggering and Bhabha background rejection
- Provide useful information for particle identification (*K*_m) rejection)

- **s**(E)/E ~5% /ÖE(GeV)
- High efficiency $20 < E_g < 300 \text{ MeV}$
- **s**(t) ~70 ps / **Ö***E* (GeV)
- s_{x,y,z} ~1 cm for photon conversion point
- Hermeticity

THE CALORIMETER STRUCTURE

Fine sampling lead/scintillating fibers calorimeter

- Volume Ratio Fiber:Lead 50:50
- Energy sampling fraction 13 %
- $X_0 = 1.6 \text{ cm} \text{ } r = 5.3 \text{ g/cm}^3$

24 barrel modules: 4.3m length
60 cells (5 layers) – 4.4×4.4 cm² granul.
2 × 32 endcap modules 10/15/30 cells
4880 read-out channels

Fiber choice: Kuraray SCSF-81 and Pol.Hi.Tech 0046 PM choice: Mesh Hamamatsu R5946 1.5"

ENERGY CALIBRATION with COSMICS

• Online filter selects 100 Hz of golden mips in the whole detector

• Peak of the ADC spectrum = response at calorimeter center (MIP) (~1 day data taking ® 1000 events/cell ® 1,2% stat. accuracy)

• The attenuation curve is measured for each channel and used in the reconstruction procedure (w(z) = A $e^{-z/l_1} + (1-A) e^{-z/l_2}$)

ENERGY CALIBRATION with E.M. SHOWERS

LINEARITY IN ENERGY RESPONSE AND ENERGY RESOLUTION

E_v(MeV)

TIMING CALIBRATION WITH COSMIC RAYS ... continue

• In 1 hour of data taking we collect enough statistics to calibrate t⁰'s and v_{eff} with the following accuracy:

- 30 , 40 ps for each t⁰
- 0.3 % on v_{eff} (average value 16.7 cm/ns)

for a MIP in a cell (~38MeV) : $s(t) \sim 340 \text{ ps}$ corresponding to: $s(t) \sim 64 \text{ ps} / \ddot{o}E(GeV)$

TIME RESOLUTION

Comparing the difference of timing between **g**events at small and large angle we estimate that of the 147 **ps** of constant term:

- 50 ps mis-calibration
- 55 ps bunch spread
- 120 ps machine time spread

TIMING PERFOMANCES: identification of K₁ interacting on EMC

Clean signature (late neutral cluster) is used for K_S tag

RECONSTRUCTION AND ALIGNEMENT OF NEUTRAL VERTEX

CONCLUSIONS AND OUTLOOK

• The KLOE Calorimeter has been kept in operation as a whole apparatus for more than 2.5 years in good operating conditions (the number of dead channels always below 0.1 % and overall good detector stability)

- The calibration procedures of energy and timing are working.
- Energy resolution of 5.7 % / Ö(E/GeV) measured
- Timing resolution of 54 ps /Ö (E/GeV) Å 50 ps achieved
- Good calibration stability observed in 6 months of operation.
- Reconstruction of masses and neutral vertices satisfactory
- Work is in progress to:
- 1) complete the setting of the time scale

2) correct the residual response non-linearity and the response along cracks regions

3) make fully automatic the calibration procedures