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ATLAS Calorimetry
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ATLAS FCal

• one electromagnetic liquid argon/copper (FCal1)
and two hadronic liquid argon/tungsten sections
(FCal2/3) integrated into a common cryostat with
the electromagnetic endcap calorimeters;

• cylindrical section 45 cm deep with 90 cm diameter;

Depth[X0] Depth[λ] Weight[t]
FCAL1 27.6 2.7 2.1
FCAL2 91.2 3.7 3.9
FCAL3 89.5 3.6 3.8

• thin gaps of liquid argon are required to avoid positive
charge build-up;

• Electrode Design:

– tube/rod electrodes assembly with cylindrical
shell gap of 250/375/500 µm and tube spacing is
7.5/8.18/9.0mm centre-to-centre in FCal1/2/3

– Tube material is copper, rods are copper in
FCal1 and pure tungsten in FCal2/3. About
12330/10320/8120 electrodes in FCal1/2/3

– liquid argon gap is maintained by peek fibre spac-
ers
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ATLAS FCal

Hexagonal tube/rod pattern Tungsten ”slugs” in FCal2/3

• Two stage summing of electrodes (4/6/9 −→
16/24/36) leads to “tiles” readout geometry;

• typical tile size is 0.2×0.2 in ∆η × ∆φ
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FCal Module 0

• prototypes for the electromagnetic (Fcal1) and one
hadronic module (Fcal2);

• 1/4 ring modules at full depth sufficient for lateral
electromagnetic and hadronic shower containment;
6.4 λ total hadronic depth −→ longitudinal accep-
tance limitations at higher energies;
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80% containment
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beam spot ~5 cm O
FCal2 Module 0
(back)
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• Testbeam setup at CERN: H6(North area beam line;
10-200 GeV/c pions, electrons and muons:)
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FCal Module 0

• FCal modules in cryostat
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Monte Carlo Simulation

GEANT 3.21/11 and GEANT4.2.0R2 base simulation
program;

Geometry Description

• Beam line: MWPC’s, S1/S2/S3 scintillators, Hole veto includ-
ing Pb shielding, lead and iron walls in front of cryostat, Tail-
Catcher, concrete beam stop, muon counter;

• Cryostat: wall structure with superinsulation and front/back
liquid argon excluders;

• FCal1 and FCal2 modules:

– Dimensions of electrodes and modules measured (FCal1) or
from drawings (FCal2);

– Electrode positioning (x, y) read from external file describ-
ing the readout;

Particle generation:

• particle vertices in (x, y) and directions from reconstructed ex-
perimental data; correlation between vertex and direction (beam
focusing) is automatically included; the same data files are used
for both Geant3 and Geant4;

• particle momentum (20-200 GeV) smeared by an estimated
0.5% beam momentum spread.

CUTS:10 KeV (Geant3) and 0.5, 1, and 2mm range cut (Geant4):

G3 G4(0.5mm) G4(1mm) G4(2mm)
ELAr(KeV); γ 10 4.4 6.18 8.67
ECu(KeV); γ 10 17.1 24.6 35.7
CPU (s/GeV) 3.8 0.75 0.68 0.61
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Test Beam set up in Geant4

Geant4 set up:
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FCal Modules in Geant4

FCal1 FCal2



Reconstruction of Monte Carlo Data

• visible energy in individual electrodes collected into
tiles using the experimental cabling/readout descrip-
tion database;

• experimental noise from randomly triggered “empty”
events is added cell by cell, using the experimental
and Monte Carlo electron calibration constants cexp

(in GeV/ADC) and cMC (inverse sampling fraction):

Erec = cMCEvis + cexpA (GeV )

in any given tile; A is the noise signal in ADC counts.

• cexp and cMC are both calculated from the average
60 GeV signal.

Sampling fraction:

G3(10KeV) G4(0.5mm) G4(1mm) G4(2mm)

c−1
MC(%) 1.44 1.42 1.41 1.36
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Results

40 GeV Electron Signal Distributions
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Results

200 GeV Electron Signal Distributions
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Results

FCal1 Electron Energy Resolution

Beam Energy [GeV]
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Exp. G3(10KeV) G4(0.5mm) G4(1mm) G4(2mm)

A 39.2±10.9 38.4±9.1 30.5±13.1 30.8±14.8 45.9±29.9

B 7.87±0.21 7.64±0.17 7.54±0.16 7.73±0.17 7.55±0.62

c 4.1±0.5 4.5±0.4 5.2±0.6 5.6±0.3 4.9±1.3

A[%GeV−1/2], B[GeV] and C[%] are the fitted resolution parameters
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Results

FCal1 Electron Signal Linearty
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Geant4 Simulation

FCal1 Electron Energy Resolution for

Various Noise Cuts
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Results

Detailed Look at Signal Composition

Cell Signal Significance [σnoise]
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More highly significant signals in experiment than in both

Geant3 and Geant4!
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Conclusion

Conclusion and Outlook

• comparison of Geant3 and Geant4 for FCAL1 Module
0 shows a good agreement for both signal and energy
resolution;

• adding noise to simulated data at cell level produces
a rather good agreement between data and Monte
Carlo for global; energy sums and resolution, at the
level of (few) percent;

• Geant4 compares well to the experimental data. How-
ever, more statistics is going to be produced for more
detailed comparisons of shower development and sig-
nal fluctuations
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