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matter
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Abstract
This document is a brief review to the main mechanisms of
electromagnetic interactions of charged particles and photons

with matter, pertinent in calorimetry
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/1. Common to all charged particles \

e lonization (~ keV ——)
e Coulomb scattering from nuclei (~ kev ——)
e Cerenkov effect

e transition radiation

2. Muons
e (e+,e-) pair production (~ 100GeV ——)
e bremsstrahlung (~ 100GeV ——)
e nuclear interaction (~ 1TeV ——)

3. Electrons and positrons
e bremsstrahlung (~ 10MeV ——)

e ¢+ annihilation

4. Photons
® gamma conversion (~ 10MeV ——)
e incoherent scattering (~ 100keV ——~ 10MeV)
e photo electric effect (¢—~ 100keV)

\ e coherent scattering (= 100keV>/
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o cross section per atom. (cm”/atom)

ngt = Np/A number of atoms per unit of volume. (atoms/cm?)

N pw N pw
Nagt = N1 +N2 +--- = Xll 5224—“'

d =ny 0 number of interactions per unit of length. (1/cm)
>, : mMacroscopic cross section
i : absorption, attenuation coefficients ..etc..

A=1/P mean free path, interaction length, etc .. (cm)
t=uaxp mass-thickness, mass/surface .. (g/cm”)
d/p nb of interactions per (mass/surface). (1/(g/cm”))
1/p : mass attenuation coefficient ..etc..
Xo/p radiation length, expressed in mass/surface (g/cm”)

dE /dt energy loss per (mass/surface) (MeV/(g/cm?))
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Ionization
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Ionization

The basic mechanism is an inelastic collision of the moving charged
particle with the atomic electrons of the material, ejecting off an

electron from the atom :

w~+ atom — p + atom™ + e~

In each individual collision, the energy transfered to the electron is
small. But the total number of collisions is large, and we can well

define the average energy loss per (macroscopic) unit path length.
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Mean rate of energy loss

The Bethe-Bloch formula gives the mean rate of energy loss by

moderately relativistic charged particles

dE 2 2mc? B2y T, u
———(8) = 2mrime’ e —s [ln ( BIZ ) —2p3° — 5(5)]

N /
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where
Te classical electron radius: e?/(4wegmc?)
mc?  energy-mass of electron
Nel electrons density in the material
Zp charge of the incident particle

Tma: maximum kinetic energy transferable to a free electron
I mean excitation energy in the material

density effect function

Nawp
A

B 2me?(y% — 1)
1+ 2ym/M + (m/M)?
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~

mean excitation energy

There exists a variety of phenomenological approximations for I,
the simplest being I = 10eV x Z

See [ICRU84] or [PDGO0] for up to date recommended values.
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the density effect

0 is a correction term which takes into account of the reduction in
energy loss due to the so-called density eftect. This becomes
important at high energy because media have a tendency to
become polarised as the incident particle velocity increases. As a
consequence, the atoms in a medium can no longer be considered as
isolated. To correct for this effect the formulation of Sternheimer

[Ster71] is generally used.

- /
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low energies

The mean energy loss can be described by the Bethe-Bloch formula
only if the projectile velocity is larger than that of orbital electrons.
In the low-energy region where this is not verified, a different kind
of parameterisation should be used.

For instance:
e Andersen and Ziegler [Ziegl77] for 0.01 < 8 < 0.05
e Lindhard [Lind63] for 5 < 0.01
See ICRU Report 49 [ICRU93| for a detailed discussion of

low-energy corrections.
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Fluctuations in energy loss

(AF) = (dE/dx).Ax gives only the average energy loss by
ionization. . Depending of the amount of

matter in Ax the distribution of AE can be strongly asymmetric
(— the Landau tail).

The large fluctuations are due to a small number of collisions with

large energy transfers.

- /
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/T he figure shows the energy loss distribution of 3 GeV electrons in 5 mh
of an Ar/CH4 gas mixture [Affh98].
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Only when (dE/dx).Ax > T),4, the distribution becomes nearly

Gaussian:

((dE/dx).Ax)/The < 0.01 Landau distribution
< 10  Vavilov distribution

> 10 Gaussian limit

-

/
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/Energy-Range relation \

Mean total (zigzag) pathlength of an ionizing particle of kinetic
energy T

1
r)= [ (dejdn)
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Because of multiple Coulomb scatterings, the mean range, defined as the

Qraight—line thickness, is smaller than R(T). /

Jalor2000 M.Maire (Lapp) October 9, 2000




onization 14

4 N

Fluctuations on AFE lead to fluctuations on the actual range
penetration of e~ (16 MeV) and proton (105 MeV) in 10 cm of water.
F »
e - £
_ e B
e pp

N /
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Bragg curve. More energy per unit length are deposit towards

the end of trajectory rather at its beginning.

proton 105 MeV in water: Bragg peak

MeV/mm

w
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X(mm)
Edep along X(MeV/bin)
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Energetic 0 rays and truncated energy loss rate

One may wish to take into account separately the high-energy
knock-on electrons produced above a given threshold T,,; (miss

detection, explicit simulation ...).

The differential cross-section for producing an electron of kinetic

energy T, with , can be written:
do o o % 1 , T T2
Y 2mrome Zﬁﬁ 1-p T + N

(the last term only for particle of spin 1/2)

- /
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~

Then, the truncated total cross-section for emitting such electrons

1S:
T:Tmaw

do
O-(EvTcut <T < Tmaaz) — / d_T dT’
T=Tcut

Those electrons must be excluded from the mean energy loss count.

The truncated energy loss rate is:

2

62

2mc? B2y Ty 9 Teut
() - (e )

The fluctuations on the truncated energy loss are smaller, since the

/
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dw ] T<Tcut

large energy transfers are excluded.




onization

/delta rays

N

200 MeV electrons, protons, alphas in 1 cm of Aluminium

RUN NR 1
WORL EVENT NR an 6/9/0
. /i
e £
~
~
0.1cm
E—

/
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muon : number of d-rays per cm in Aluminium

Tables for MUON + in Aluminium

500 L = DRAY X-seg (1/cm)
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Incident electrons and positrons

For incident e~/* the Bethe Bloch formula must be modified

because of the mass and identity of particles (for e™).

One use the Moller or Bhabha cross sections [Mess70] and the
Berger-Seltzer dE/dx formula [ICRUS84, Selt84].

N /
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-~

truncated Berger-Seltzer dE/dx formula

dE 1
——] = 27T7“2m(32nel—2 X
dx T<Tcut /B
[ln <2m02 (v+1)
2
where

T.,+ energy cut for 0 — ray

The functions F'* are given in [Selt84].

-

>+Fi(’y—1,mp)—5]

Te Trut/mc?
Tmae Maximum energy transfer: v — 1 for e™, (y —1)/2 for e~
Tup ~ MIN(T¢, Trmagz)

/
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/de/dx due to ionization (Berger-Seltzer formula) \

Tables for ELECTRON in Aluminium
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differential cross section

For the electron-electron (Moller) scattering we have:

do 2127
= X

de B2(y — 1)

and for the positron-electron (Bhabha) scattering:

do 2127 1 B4
S — = + By — Bze + Byé?
de (v 1) [5 e TR e ]

-

-1 1(1 271y 1 1 291
2 € \ € 2 1—e\1—¢ 2

)

/
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where
E = energy of the incident particle
v = E/mc? y = 1/(v+1)
By = 2—y° By = (1-2y)(3+y%)
By = (1-2y)*+(1-2y)’° By, = (1-2y)°
e = T/(E—mc)

with 1" the kinematic energy of the scattered electron.

The kinematical limits for the variable € are:

Tcut 1
; S€S 9

- E —mec

- /
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Multiple Coulomb scattering




Multiple Coulomb scattering 2
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Single Coulomb scattering

Single Coulomb deflection of a charged particle by a fixed nuclear
target.

We

The cross section is given by the Rutherford formula

do 7“22322 (mc) 1
Q4 Bp ) sin* /2

N /
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/1\/Iultiple Coulomb scattering \

Charged particles traversing a finite thickness of matter suffer
repeated elastic Coulomb scattering. The cumulative effect of these
small angle scatterings is a net deflection from the original particle
direction.

If the number of individual collisions is enough (> 20) the multiple
Coulomb scattering angular distribution is gaussian at small angles
and like Rutherford scattering at large angles.

The Moliere theory reproduces rather well this distribution.

\[1\/[0148, Betheb3| /
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Multiple Coulomb scattering
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Gaussian approximation

The central part of the spatial angular distribution is approximately

92
exXp [— 2—9(2)] dQ

1
2#9(2)

13.6 MeV [ [
0o = \/ < |1 : In | —
0 B z X, [ —|—()()38n<X0>]

where [/ X is the thickness of the medium measured in radiation
lengths Xj.

- /
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Multiple Coulomb scattering 6

G his formula of 6y is from a fit to Moliere distribution. It is \
accurate to < 10% for 1072 < 1/ Xy < 102

note: the appearance of Xy in the formula is only for convenience.

Others formulas for 6y have been developed, starting from the
Moliere theory. [Lynch91]

related quantities

e lateral displacement r (/)
e true (or corrected) path length (1)
e projected angular deflection 6,,,,;(!)

they are correlated random variables, for instance needed in Monte

) i \ o)
A
\ _y /

Carlo simulation.

1
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Energy dependence
10 7+ of 200 MeV and 1 GeV crossing 10 cm of Aluminium.

WORL RUN NR 1

EVENT NR an 22/8/0

1cm

N /
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/10 cm of Aluminium. Field 5 tesla. \

top: 10 e~ (300 MeV): energy loss fluctuations only (no muls)
bottom: 10 et (300 MeV): multiple scattering only (no eloss fluct)

RUN NR 1
WORL EVENT NR 28 22/9/0

N /
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Multiple Coulomb scattering

-~

-

e J.M. Fernandez-Verea et al. :

Others models for simulation

Several models of multiple Coulomb scattering simulation
algorithms have been proposed, not necessarily based on the
Moliere theory. (See the references in [PDGO00] )

For instance :

condensed) model. [Fer93]

e L.Urban : a condensed model based on Lewis theory. Urb00]

a "mixed” (detailed +

/
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/backscattering of low energy electrons \

Because of its small mass, electron can have large deflection by
scattering from nuclei.

For low energy incident electron beam, the ratio of electrons which
are backscattered out of the detector may be important (albedo).

0.3 Tl'!|] T771 ]ii-lll T T .TI':—H; T«
Absorber T Cu ]
s .l"'u
N [ e —
Y 0.7 -
‘ J. o i
- ' = i
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91 i 10
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\_ Y,

Jalor2000 M.Maire (Lapp) October 9, 2000




Multiple Coulomb scattering 11

Kalbedo : The incident beam is 10 electrons of 600 keV entering h
50 um of Tungsten.
4 electrons are transmitted, 2 are backscattered.

WORL RUN NR 1

EVENT NR 18 2al9/0

N /
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Jerenkov radiation 2
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Cerenkov radiation

In a material with refractive index n, a charged particle emits
photons if its velocity is greater than the local phase velocity of
light.

The charged particle polarizes the atoms along its trajectory.
These time dependent dipoles emit electromagnetic radiations.

If v < ¢/n the dipole distribution is symmetric around the particle
position, and the sum of all dipoles vanishes.

If v > ¢/n the distribution is asymmetric and the total time
dependent dipole is non nul, thus radiates.

- /
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Jerenkov radiation

-

mechanism of the Cerenkov radiation [Grupen96].

Fig. 6.7. Dlustration of the Cherenkov effect 68].

1

particle {
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/The Huyghens construction gives immediately : \
1
cos = —
bn
Thus :
1 1
— <8 <1=0<86 < arccos —
n n

The number of photons produced per unit path length and per

energy interval of the photons is

2\ 2 2 1
TN _ 02 gnrg - 19y
de dv  hc Te MC B2 n?(e)
in which
Bn(e) >1

In the X-ray region n(e) ~ 1. There is no X-ray Cerenkov emission.

- /
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The energy lost by the charged particle due to Cerenkov emission is

small compared to collision loss, even in gas :

~ 107! to 107° MeV/(g/cm?)

- /
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/Bremsstrahlung \

A fast moving charged particle is decelerated in the Coulomb field

of atoms. A fraction of its kinetic energy is emitted in form of real

photons.
The probability of this process is o< 1/M? (M: masse of the particle)

and oc Z? (atomic number of the matter).

Above a few tens MeV, bremsstrahlung is the dominant process for
e- and e+ in most materials. It becomes important for muons (and
pions) at few hundred GeV.

- /
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differential cross section

The differential cross section is given by the Bethe-Heitler formula

[Heitl57], corrected and extended for various effects:
e the screening of the field of the nucleus
e the contribution to the brems from the atomic electrons
e the correction to the Born approximation
e the polarisation of the matter (dielectric suppression)
e the so-called LPM suppression mechanism

See Seltzer and Berger for a synthesis of the theories [Sel85].

- /
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screening effect

Depending of the energy of the projectile, the Coulomb field of the

nucleus can be more on less screened by the electron cloud.

A screening parameter measures the ratio of an 'impact parameter’
of the projectile to the radius of an atom, for instance given by a
Thomas-Fermi approximation or a Hartree-Fock calculation.

Then, screening functions are introduced in the Bethe-Heitler

formula.
Qualitatively:
e at low energy — no screening effect

e at ultra relativistic electron energy — full screening effect

- /
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electron-electron bremsstrahlung

The projectile feels not only the Coulomb field of the nucleus
(charge Ze), but also the fields of the atomic electrons (Z electrons
of charge e).

The bremsstrahlung amplitude is roughly the same in both cases,
except the charge.

Thus the electron cloud gives an additional contribution to the
bremsstrahlung, proportional to Z (instead of Z?).

- /
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Born approximation

The derivation of the Bethe-Heitler formula is based on
perturbation theory, using plane waves for the electron. If the

validity of the Born approximation:

B> ol

is violated for the initial and/or final velocity (low energy) the
Coulomb waves would be used instead of the plane waves.

To correct for this, a Coulomb correction function is introduced in
the Bethe-Heitler formula.

- /
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/high energies regime : E > mc?/(aZ'/?) \

Above few GeV the energy spectrum formula becomes simple :

do 1
o ~ dar? -
dk] T'sa e k :
4 4
{(5 - 50+ 07) (2 lhraa = 1201+ 2820 1)
where

k energy of the radiated photon ; y=Fk/F

Q fine structure constant

Te classical electron radius: e?/(4megmc?)

Lyoq(Z) 1n(184.15/Z1/3)  (tor z > 5)
(Z) 1n(1194/Z2%/3)  (tor z = 5)

\ f(Z) Coulomb correction function /
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limits of the energy spectrum

fmin = 0 In fact the infrared divergence is removed by the
dielectric suppression mechanism, which is not shown in the

formula 1.
For k/E <10™*: do/dk becomes proportional to & [Antho96]

Enar = F — mc? ~ . In this limit, the screening is incomplete,

and the expression 1 of the cross section is not completely accurate.

- /
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mean rate of energy loss due to bremsstrahlung

kma:z: ~E

dE do
—% Nat / k % dk (2)
kmin=0

Nnat 18 the number of atoms per volume.
The integration immediately gives:
dE E
e 3
dx XO

with:
1 de

Xo

N /
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Jremsstrahlung 10

ﬁ{adiation Length \

The radiation length has been calculated by Y. Tsai [Tsai74]

1
— = 4o rZnat {2° [Lyaa — f(2)) 4+ ZL, .4}
0
where
o fine structure constant
Te classical electron radius
Nat number of atoms per volume: Ny,p/A

Lyoq(Z) 1n(184.15/Z1/3)  (tor z > 5)
L' (Z) In(1194/Z%/3) (torz > 5)

f(Z) Coulomb correction function

f(Z) = a?[(1+a*)~* +0.20206 — 0.0369a + 0.0083a* — 0.002a° - - ]

Qith a=uoa/ /
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main conclusion: The relation 3 shows that the average energy
loss per unit path length due to the bremsstrahlung increases

linearly with the initial energy of the projectile.

equivalent:

This is the exponential attenuation of the energy of the projectile

by radiation losses.

- /
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/critical energy \

The total mean rate of energy loss is the sum of ionization and

bremsstrahlung.
The critical energy E. 1s the energy at which the two rates are

equal. Above E. the total energy loss rate is dominated by

bremsstrahlung.

200- T IIIIIII T T IIIIIII

Copper
Xg=12.86 g cm2
100 - E¢=19.63 MeV

S _ E -
v 70E Q
s 0F _ S Saq. 710 MeV ]
o 50 F ~ Rossi: @ - 610 MeV/ N / Z+0.92 T
X 3 lonization per X, 3 2 50 Z+1.24 o ]
X 40 = electron energy - K| N |
5 AN
o 30 i
5 20 + Solids

20 o Gases

10

Brems = ionization -

i|4 He Li BeB CNONe
1

i 1 1 1 L1 1.1 I
10 1 1 | I 1 1 | 111
2 5 10 20 50 100 200 S 2 5 10 20 50 100

\ Electron energy (MeV) Z /
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dE/dx for electrons

Tables for ELECTRON in Aluminium

104

10

107

10

a LOSS (MeV/cm)

10°° 107° 10"

4

1072 107 107" 1

electron kinetic energy (GeV)

10 10% 10°

>alor2000
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@ N

e~ 1 GeV in 1 meter of Aluminium.

Brems counted as continuous energy loss versus cascade development

WORL RUN NR 1

2
EVENT NR 8 2/9l0

10 cm

N /
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4 N

fluctuations : Unlike the ionization loss which is quasicontinuous
along the path length, almost all the energy can be emitted in one
or two photons. Thus, the fluctuations on energy loss by
bremstrahlung are large.

- /
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G}nergetic photons and truncated energy loss rate \

One may wish to take into account separately the high-energy
photons emitted above a given threshold k.,; (miss detection,
explicit simulation ...).

Those photons must be from the mean energy loss count.
dE g
——] = N / k=7 dk (4)
dz | pop. dk
kmin:O

Nnat 18 the number of atoms per volume.

Then, the truncated total cross-section for emitting 'hard’ photons

1S:
kzmawwEd
O(Ea kcut <k< kmaaz) — / i dk (5)

- /
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4 N

In the high energies regime, one can use the complete screened

expression 1 of do/dk to integrate 5. This gives:

for £ > kcut : Ubr(E7 k 2 kcut) ~ oo

4 1 [ E
In
3 Nat Xo

| ©

kcut

The bremsstrahlung total cross section increases as In F.

(in fact, taking into account the LPM effect leads to o3, o< 1/vE when
E > Elpm )

the average angle of emission of the photon is

mcz

V=%

which is independent of the energy of the emitted photon.

- /
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-

number of interactions per mm in Lead (cut 10 keV)

@) ! I [ TR | T T T !
-3 —2 —1 O 1 2 3 4 5

bremsstrahlung sigma(1./mm) — IgTkin(MeV)

electron kinetic energy (In(MeV))

N /
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/e_ 200 MeV in 10 cm Aluminium \

WORL RUN NR 11/9/0

EVENT NR 1

-l

N - Y
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-~

e~ 200 MeV in 10 cm Aluminium (cut: 1 MeV, 10 keV). Field 5 tesla

~

WORL

NR
EVENT NR

NR 1
EVENT NR 2

11/9/0

1cm

1cm

-

/

>alor2000
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4 N

Bremsstrahlung by high energy muon

The bremsstrahlung cross section is proportional to 1/m?. Thus

the critical energy for muons scales as (m,,/m.)?, i.e. near the TeV.

Bremsstrahlung dominates other muon interaction processes in the
region of catastrophic collisions (y > 0.1 ), at "moderate” muon

energies - above knock—on electron production kinematic limit.

At high energies (E > 1 TeV) this process contributes about 40%

to average muon energy loss.

See [Keln97] for up-to-date review and formulae.

- /
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/formation length ([Antho96]) \

In the bremsstrahlung process the longitudinal momentum transfer
2

from the nucleus to the electron can be very small. For E > mc
and >k :
k(mc?)? k
dlong “SE(E — k)~ 272

Thus, the uncertainty principle requires that the emission take
place over a comparatively long distance :

2hcy?
fore =2 (7)

fov is called the formation length for bremsstrahlung in vacuum.

It is the distance of coherence, or the distance required for the

electron and photon to separate enough to be considered as

separate particles. If anything happens to the electron or photon
thle traversing this distance, the emission can be disrupted. /
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@ N

dielectric suppression mechanism

The suppression is due to the photon interaction with the electron
gas (Compton scattering) within the formation length.
The magnitude of the process can be evaluated using classical

electromagnetism |[Ter72].

A dielectric medium is characterized by his dielectric function:

e(k) =1 — (hwy/k)*  with hw, = \/4mngrd mc®/a

(ne is the electron density of the medium = Zn,:.)

It can be shown that the formation length in this medium is

reduced:
2hey? k

™ i sy ? ®

- /
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The effect is factorized in the bremsstrahlung differential cross
section:
do do
— = S4(k) | = 9
dk d( ) [dk]Tsai ( )
Sq is called the suppression function :
def fm (k) k?
Sq(k) = = 10
=Rk T R ey 10
Sq(k) is vanishing for k? < (yhw,)? i.e. :
il < heop (~107*, 107" in all materials) (11)
E — mc?
Then,
k2
Sd k) ~ (12)
A CT N
which cancel the infrared divergence of the Bethe-Heitler formula.
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Gandau-Pomeranchuk-l\/[igdal suppression mechanism \

The electron can multiple scatter with the atoms of the medium
while it is still in the formation zone. If the angle of multiple
scattering, 0,,s, is greater than the typical emission angle of the
emitted photon, 0y, = mc?/E, the emission is suppressed.

In the gaussian approximation : 62, = 27 7—12 / g((f) where f, is the

formation length in vacuum, defined in equation 7.

Writing 62,, > 07 show that suppression becomes signifiant for
photon energies below a certain value, given by

k E
— < 13
E  Eipm (13)
Eipm 1s a characteristic energy of the effect :
212
Eipm = 40‘ (mhc " x, ~ (7.7 TeV/em) x Xo (em)  (14)
m  hc

- /
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/The multiple scattering increases gjong by changing the direction \

and the momentum of the electron. One can show :

[k (mc?)?
Qlong — <W> [1 + e Elpm fm<k>]

where f,, is the formation length in the material.

On the other hand the uncertainty principle says : qiong = hc/ fm

These two equations can be solved in f,,:

2hey? [k Eipm
fm (k) = k E?

if k B < E? (15)
Hence, the suppression function Si,, :
def fm(k) k Elpm (k/E)
Stpm (k) = = 16
m® 5w N S\ @,
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4 N

total suppression

The LPM and dielectric mechanism both reduce the effective
formation length. The suppressions do not simply multiply. The
total suppression follows |Gal64]

o 0
S~ "8, S,

- /
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-

dN/dk (arb. units)
[

[
o
]

AN/dk~k

AN /dk~k8

kp kzen

AN/dk~k™?

N

4

10
k (arb. units)

40

100

(XoNA/A) ydo py/dy

1.2

~

100 GeV

2 10GeV

(a) Bremsstrahlung -

0.25

0.5 0.75 1
y=k/E

/
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e- 10 Gev in Pb. Bremsstrahlung: gamma spectrum

evts

-3 |
x 10
0.35 |—

0.3 —

0.25 |—

0.2 —

0.15 |—

0.1 —

0.05 |—

o | | | | |
-2 -1 (0} 1 2

4
log10(E(MeV))
energy distribution of photons at z=zplot
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/El46 (SLAC) data [Antho96]

0.15
. {a) 2% X, Lead
- 25GeV beam

L
—

dN/dlogk /X0

0.05

11 !HIII'

I!IFHITI -

1L (b) 2% X, Lead
1+ 8 GeV beam

I|I'IIH' 1 I1IIIIF1 |

0.15

dN/diogik /X0

|||||11| | I 0

0 11 I|I1IE
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N
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/
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e’ , e ) annihilation

4 N

(e*,e”) annihilation into two photons

et +eT = y+ny
(need two  for momentum conservation, if the e~ is assumed to be

free).

Theoretically, (e, e™) annihilation is related to Compton

scattering by crossing symmetry:
e incoming e™ < outgoing e~

e outgoling 7y <+ Incoming -y

N /

M.Maire (Lapp) October 9, 2000
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e’ , e ) annihilation 3
/total cross section per atom \
Zrr? | v2 +4 1 3
o(Z,F) = e |2 +2fy_|_ ln(7+\/72—1>— s

Y+ | y2-1 V-1

E = total energy of the incident positron

v = E/mc’

r. = classical electron radius

The cross section decreases with increasing E.

The nonrelativistic limit is:

2
Znre

B

The angles of emitted photons are determined by momentum

Q)nservation. /

Jalor2000 M.Maire (Lapp) October 9, 2000
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,e ) annihilation

-

N

number of interactions per cm in Aluminium

Tables for POSITRON in Aluminium

o
I

= ANNI X-sec (1/cm)

10°°

107° 107" 1072 107 107" 1

positron kinetic energy (GeV)

10

10% 10°

/
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4 N

e

The annihilation in fly is not the dominant process. Most of the
time the positron comes at rest and does a positronium with the

electron.

The positronium decays in two-photon (in 0.125 nanosec) or
three-photon state (in 142 nanosec.)

The (e™,e™) can also annihilate in a single photon: the other

photon is absorbed by the recoil mucleus. However this mechanism

is suppressed by a factor a?.

- /
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e, e ) annihilation

-~

~

e™ 30 MeV in 10 cm Aluminium. Annihilation in fly (left), at rest (right).
WORL T NE 1219/0 WORL AT NE . 12/9/0
Y
B
e*: éf
1
icm icm
— —

-

/
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4 N

(e*,e”) pair creation by

photon




el e ) pair creation by photon 2

/(e+, e~ ) pair creation by photon \

This is the transformation of a photon into an (e™,e™) pair in the

Coulomb field of atoms (for momentum conservation).

To create the pair, the photon must have at least an energy of
2mc? (1 4+ m/Me.).

Theoretically, (e™,e™) pair production is related to bremsstrahlung
by crossing symmetry:

e incoming e~ ¢ outgoing e
e outgoing v <> incoming -y

For E., > few tens MeV, (e*,e™) pair creation is the
for the photon, in all materials.

- /
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e, e ) pair creation by photon 3

4 N

differential cross section

The differential cross section is given by the Bethe-Heitler formula

[Heitl57], corrected and extended for various effects:
e the screening of the field of the nucleus
e the pair creation in the field of atomic electrons
e the correction to the Born approximation
e the LPM suppression mechanism

See Seltzer and Berger for a synthesis of the theories [Sel85].

- /
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4 N

screening effect

e

Depending of the energy of the projectile, the Coulomb field of the

nucleus can be more on less screened by the electron cloud.

A screening parameter measures the ratio of an 'impact parameter’
of the projectile to the radius of an atom, for instance given by a
Thomas-Fermi approximation or a Hartree-Fock calculation.

Then, screening functions are introduced in the Bethe-Heitler

formula.
Qualitatively:
e at low energy — no screening effect

e at ultra relativistic electron energy — full screening effect

- /
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e, e ) pair creation by photon 5

~

triplet creation in the electron field

The projectile feels not only the Coulomb field of the nucleus
(charge Ze), but also the fields of the atomic electrons (Z electrons
of charge e).

As for bremsstrahlung, the amplitude is roughly the same in both

cases, except the charge.

Thus the electron cloud gives an additional contribution to the pair

creation, proportional to Z (instead of Z2).

However, in the Coulomb field of an electron, the threshold is :
E, > Amec?.

The recoil electron may be ejected from the atom, thus the final

state can be a triplet (e™,e™,e™). The kinetic energy of this e~ is

small.

N /
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e, e ) pair creation by photon 6

4 N

Born approximation

The derivation of the Bethe-Heitler formula is based on
perturbation theory, using plane waves for the electron. If the

validity of the Born approximation:

B> ol

is violated for the e and/or e~ velocity (low energy photon) the
Coulomb waves would be used instead of the plane waves.

To correct for this, a Coulomb correction function is introduced in
the Bethe-Heitler formula.

- /
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e, e ) pair creation by photon 7

/high energies regime : k> mc?/(aZ'/3) \

Above few GeV the energy spectrum formula becomes simple :

do 1
- ~ 4 2 —
dE] Tsaz e k :

{(1- 550 -0) (27 lbraa = 12 + 2L00) J)

where
k energy of the incident photon
E total energy of the created et (ore™) ; x = FE/k

Lyaa(Z) 1n(184.15/Z1/3)  (tor z > 5)
(Z) 1n(1194/Z2/3)  (tor z > 5)

f(Z2) Coulomb correction function

- /
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@nergy spectrum \

: no infrared divergence. E, 4, = k — mc®.

limits: E,,;, = mc?

The partition of the photon energy between e’ and e~ is flat at low
energy (k < 50 MeV) and increasingly asymmetric with energy.
For k£ > TeV the LPM eftect reinforces the asymmetry.

/
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e, e ) pair creation by photon 9

Gl the high energies regime, one can use the complete screened \
expression 1 of do/dE to compute the total cross section.

E ~k
max do-
o(k :/ —dFE (2)
which gives:
7 1
Opair(k> ~ 5 Ny XO (3)

Nnat 18 the number of atoms per volume.

The pair creation total cross section is approximately constant
above few GeV, for at least 4 decades (then, LPM effect).

the average angle of emission of the electron, respective to the
incident photon is

2
g me
k
thch is independent of the energy of the emitted electron. /
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-

N

number of interactions per cm in Aluminium

Tables for GAMMA in Aluminium

—1
o - a PAIR X-sec (1/cm)
—2
10 T |-
—3
10 T
\\\\HH‘ \\\\HH‘ \\\\HH‘ \\\\\\H‘ \\\\HH‘ \\\\HH‘ \\\\\H\‘ \\\\HH‘ Lo
10°° 107° 107" 1072 107 107" 1 10 10% 10°

photon energy (GeV)

/
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e, e ) pair creation by photon

11

/7 200 MeV in 10 cm Aluminium. Field 5 tesla

RUN NR
12/9/0
WORL EVENT NR
//’ T
e
N \

1icm

N

/

>alor2000
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e, e ) pair creation by photon 12

Gandau-Pomeranchuk-l\/[igdal suppression mechanism \

Due to the LPM mechanism, the (e, e™) pair creation is reduced
for [PDGOO] :

Eipm
E(k — E) >k Ejpm — z(l—2)> ’;; (4)
where: x = E/k =k > 4E,m,
Eipm 1s a of the effect :
22
Eipm = ~— (me)” x, ~ (7.7 TeV/em) x Xo (em) — (5)
47 hc

The suppression function Sjy, is:

| kEpm | Epm/k
Stpm (E) = \/E(k —E) \/x(l — ) (6)

- /
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1.00 k
R
N
\z 0.75
ol
3 10 TeV
~ (S
3 0.50
éﬁ 100 TeV | By
)
»< 0.25 | i
e . 1 PeV / /
LIOO PeV 10 PeV
O t
0 0.25 0.5 0.75 1

x=FE/k

/
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Compton scattering
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Jompton scattering 2

The Compton effect describes the scattering off quasi-free atomic

ompton scattering

electrons :

y+e—q +é

Each atomic electron acts as an independent cible; Compton effect

is called incoherent scattering. Thus:

cross section per atom = Z X cross section per electron

The inverse Compton scattering also exists: an energetic electron
collides with a low energy photon which is blue-shifted to higher

energy. This process is of importance in astrophysics.

Compton scattering is related to (e¢™,e™) annihilation by crossing

\Symmetry. /
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Jompton scattering

/kinematic

K =

T =

cotgp =
limits 6 =0:

0=m:

-

Assuming the initial electron free and at rest, the kinematic is
given by energy-momentum conservation of two-boby scattering.

1+ x(1 — cosB)
k—Ek
(14 k) tan(6/2)

/ _
kma:c _ k
/ _ 1
min k2ﬁ)—|—1

v
[ )
k
where k = —
mc
_ T
Tmin =0 Qbmaa: — 9
_ 2K _
Tma,:z: — k2,€_|_1 ¢mzn =0

/
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4 N

energy spectrum

Under the same assumption,the unpolarized differential cross

section per atom is given by the Klein-Nishina formula [Klein29] :
Llo2 1= 1 (1 ’ o
6 e p— JES—
€ K € K2 €

k" energy of the scattered photon ; €= Fk'/k

do  7wri Z
dk!  mc? K2

where

r. classical electron radius

K k/mc?

- /
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4 N

total cross section

k! =k
s d
(k) = %
Ko —k/(2r+1) AR

2 3 2
B 5 K® — 2K — 2 K>+ 9K% + 8k + 2

limits
In 2k
k— oo ogoesto0: o(k)~7wrsZ
K
8T , :
E—0: o — e r. Z (classical Thomson cross section)

- /

Jalor2000 M.Maire (Lapp) October 9, 2000




Jompton scattering 6

~

low energy limit

In fact, when £ < 100 keV the binding energy of the atomic
electron must be taken into account by a corrective factor to the
Klein-Nishina cross section:

do [da] )
L NS
& Ldk |

See for instance [Cullen97] or [Salvat96] for derivation(s) and

discussion of the scattering function S(k,k’).

As a consequence, at very low energy, the total cross section goes
to 0 like k2. It also suppresses the forward scattering.

At X-rays energies the scattering function has little effect on the

Klein-Nishina energy spectrum formula 1. In addition the Compton

/

Jalor2000 M.Maire (Lapp) October 9, 2000

scattering is not the dominant process in this energy region.
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4 N

number of interactions per cm in Aluminium

Tables for GAMMA in Aluminium
COMP X-sec (1/cm)
1
10
—2
10 Tk
—3
10 T
\\\\\\H‘ \\\\\\H‘ \\\\\\H‘ \\\\\H\‘ \\\\\\H‘ \\\\\\H‘ \\\\\\H‘ [ NN
107° 107" 1077 1072 107" 1 10 10% 10°

photon energy (GeV)

N /
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v 10 MeV in 10 cm Aluminium: Compton scattering

~

RUN NR

1

RUN

NR 1

WORL EVENT NR 16 12/9/0 WORL EVENT NR 13 12/9/0
Y
e
S — e
-
1cm 1cm
— —

-

/
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v 10 MeV in 10 cm Aluminium: Compton scattering
WORL EVENT NR 4 1290 WORL EVENT R o 15970
’Y‘
e e o
ee_
e S
\
1icm 1cm
— —

N

>alor2000
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Compton scattering : v 10 MeV in Aluminium. Compton edge:

energy spectrum of scattered photon (left) and emitted e~ (right)

~
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‘ ‘ L L L ‘
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Compton. electron kinetic energy (MeV)
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4 N

absorption, diffusion, attenuation

Only a fraction of the energy of the incident photon is transferred
to the recoil electron, which is generally stopped into the material.
Thus this energy is absorbed by the material.

The mean kinetic energy of the electron is :

k
do
<T(k)>—//. T%dk

Then the absorption coefficient of Compton scattering is defined as

(T'(k))

Uabs = Nat . (nat is the nb of atoms per Volume)

Habs
P

- /
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is the mass absorption coefficient.
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4 N

Similar, from the mean energy of the diffused photon one defines
the scattered coefficient of Compton scattering

k /
do (k")
() = / ko ? Hsca = Tat

min

The attenuation coeflicient of Compton scattering is

def
Hatt — Nat0 = Mabs + Hsca

and similar relations for the mass coefficients.

- /
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Rayleigh scattering

Rayleigh scattering is the scattering of photons by an atom as a
whole : all the electrons of the atom participate in a coherent

ImMamnner.

It is an collision: no energy transfer from photon to atom

(no ionisation nor excitation).

At x-rays and y-rays energy region, Rayleigh scattering is small
compared to the photo electric effect, and can be generally

neglected.

- /
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Photoelectric absorption

A electron can absorb completely the energy of a photon :
Y + atom — atom™ + e~

The electron is ejected with kinetic energy T' = k — B;.
(k: energy of the incident photon, B: binding energy of the
corresponding subshell). The nucleus absorbs the recoil momentum.

The cross section per shell can be parametrized [Biggs87]| :

1
_ .2 4 5
os =1, Z°f <ka(k)>

with f : nonsimple function of 1/k, and 1 < a(k) < 4.

- /
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The total cross section has discontinuities at £k = B,

(absorption edge).

There are several parametrizations and tables of the cross sections.
See [Cullen97, Biggs87].

If £ > B the absorption occurs mainly on the K-shell (80% of the

cases).

The electron is emitted forward in the direction of the incident
photon at high k, and perpendicular to the photon at low k
[Sauter31, Gavri61].

Following the photoabsorption in the K-shell, characteristic X-rays

or Auger electrons are emitted [Perkin91].

- /
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N

[N
<
(o)

barns/atom)

— 1kb

Cross section

1b

10 mb

b

Gc:oherent
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/

>alor2000

M.Maire (Lapp) October 9, 2000



’hotoelectric absorption 5

— oq (b) Lead (Z = 82) ]

o — experimental G ¢

1 Mb —

coherent

Cross section (barns/atom)
x
&
|

[
o
|

10 mb
10 eV 1 keV 1 MeV 1 GeV 100 GeV

Photon Energy

N /
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Kattenuation

-

Otot — Opair + Ocomp + Ophot + Orayl

— W = Ngt Otot

A beam of monoenergetic photons is attenuated in intensity (not in

energy) according : I(x) = I(0)exp(—p z) = I(0) exp(—x/N)

Below : 20 photons, 5 MeV, entering 10 cm of Al. 4 exit unaltered.

~

WORL

RUN

EVENT NR

1
28

15/9/0

/
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/2() photons, 400 keV, entering 10 cm of water. \

(compare with e~ and protons)

WORL RUN NR 1

EVENT NR 28 18/9/0

N — /
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Macroscopic cross sections for photon in water. (— mean free path)
Tables for GAMMA in Water
2
107E . PHOTX-sec(ifem)  __....., .COMP X-sec(llem) o
E PAIR X-sec (1/cm)-=~"" o RAYL X-sec (1/fecm)
10 ; Tot X-ngﬁﬂféﬁ) . Mean free path (cm)
7/‘ ‘A—ﬂfjﬂ=2é
10 E
° ‘\\\
sl T
10 " & Han
E X\\A
—4 [ xxl
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8 T
10 &
10 &
10 &
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photon energy (GeV)
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100

10

o
[EEN

0.01

0.001

Absorption length A (gZcm?)

[N
OI
~

10eV  100eV

N

1 keV

10keV 100 keV

1MeV 10 MeV
Photon energy

100 MeV  1GeV  10GeV 100 GeV
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4 N

Electromagnetic cascades

The development of cascades induced by electrons or photons is
governed by bremsstrahlung of electrons/positrons and (e™,e™)
pair creation by photons, until the energy ot secondary

electrons/positrons fall below the critical energy F..

Then the electrons and positrons lose their energy preferentially by

ionization, halting the cascade.

- /
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-~

v 200 MeV in 1 Xy Aluminium. left: pair only; right: pair + brem

~

RUN NR 1
WORL EVENT NR 2

12/9/0

WORL

EVENT NR 1

NR 1 21/9/0

1cm

-

/
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~v 200 MeV in 2 Xy Aluminium. Pair + brem
RUN NR 1
WORL EVENT NR 5 21/9/0
)
: e
,,,,,,,,,,,,,,,,,, F> 1

N /
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longitudinal profile in homogeneous material

Beyond the first radiation length, the mean longitudinal profile of

the energy deposition is well described by a gamma function
[Long75] :

db
- = Eq - const - t* - exp(—bt) with t = x/ X (1)

a and b are fit parameters dependent on the material.

On the other hand, a simple model of shower development
(|[Leo94]) can predict the maximum of the distribution :

_CL_ EO
tmar = ; —kln(Ec)

- /
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e~ 10 GeV in PbWO4
Simulation and gamma-fit of the longitudinal profile [Melo99]
S 0.12 R 7
= Entries 200
Mean 8.070
% 0.1 - RMS 3.983 | |
~ ' /ndd.2834E+05,/ 98
0.08 f
0.06 -
0.04 ]
0.02 f
O :"\ T T I S T T I T T S A B MMt s
0O 25 5 7.5 10 12.5 15 17.5 20 22.5 25
t = X/X0

N /
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left: e 1 GeV, 10 GeV, 100 GeV, 1 Tev in PbWO4

right: e~ 10 GeV,; profile and its intrinsic fluctuations

. . oo |
S 012 - n S i
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e~ 5 GeV in PbWO4

cumulative longitudinal profile and its intrinsic fluctuations (— leakage)

~

PbWO4 e- 5 GeV
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S
T

80

60

40

20

Il L1 Il
2 4 6 8 10 12 14
cumul longit energy dep (% of E inc)

16

18

uka
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e~ 1 GeV in Water
data [Cran69]| and simulation of the longitudinal profile

H20 e- 1 GeV G4-G3-data comparison

N
N
o u

(1/E0)(dE/dRadl)
N
o (4]

125 = data

-
o

N
a o

N
&)

I | ‘ I | ‘ | ‘ I I ‘ I | ‘ | | ‘ I I ‘ | |
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-
o
w
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Y data

-
o

o T
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radial energy profile (% of E inc)

/

Jalor2000 M.Maire (Lapp) October 9, 2000




Jlectromagnetic cascades 10

4 N

radial profile in homogeneous material

The lateral spread of an electromagnetic shower is mainly caused
by multiple scattering.
The Moliere radius is defined :

21 MeV
Ry = "2 X
E. 0

On average, 90% of the shower energy is contained in a (semi

infinite) cylinder of radius R,,, in any material.

This radial distribution is well represented by the sum of two

gaussian.

The distribution is nearly independent of the incident energy Ej

- /
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-

radial profile
left: e~ 10 GeV in PbWO4, simulation and two-gaussian fit.
right: 1 GeV and 1 TeV profiles
= =
N N f
2 g
S S a E
S S
-1 -1
10 10 -
2
10+ 107 i
0o I 2 3 4 5 6 o 1 2 3 4 5 ¢
u = Rho/X0 u = Rho/X0
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KAt high enough energies, the LPM effect can cause signifiant elongatiorx
of electromagnetic cascades ...

apparently, not yet at 10 TeV ...

Fe e-10TeV LPM - no LPM comparison

(1/E0)(dE/dX0)

o

longit energy profile (% of E inc)

N /
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direct (eT, e ) pair creation by muon

-~

N

i+ nucleus — g+ et + e~ + nucleus

/\

Direct (e™,e”) pair creation by muon

Creation of a (e',e™) pair by virtual photon in the Coulomb field

of the nucleus (for momentum conservation).

c- e+

~

/
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It is one of the most important processes of muon interaction.

At TeV muon energies, pair creation cross section exceeds those of
other muon interaction processes in a wide region of energy
transtfers :

100 MeV <€ < 0.1 E,

Average energy loss for pair production increases linearly with
muon energy, and in TeV region this process contributes over 50 %

to the total energy loss rate.

- /
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6nergy transfers \

Main contribution to the total cross section is given by transferred

energies:

5MeV < € < 0.01 E,,

The contribution to average muon energy loss is determined mostly
by region:
107° E, <e<0.1E,

Thus, to adequatly describe the number of pairs produced, average
energy loss and stochastic energy loss distribution one need to
reproduce with a sufficient accuracy the differential cross section

behaviour in a wide range of energy transfers:

SMeV < e < 0.1 E,

- /
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differential cross section

The differential cross section is given by Kokoulin et al. [Koko71].

It includes :
e screening of the field of the nucleus
e correction for finite nuclear size
e contribution from the atomic electrons [Keln97]

See [Koko71] for a complete discussion.
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ﬁdiﬂ'erential Cross section \

The differential cross section per atom can be written as :
do  4a°r®1—w
de 3T €
with
pmam me 2
FaBo= [ |owo+ (2) awn|d @
0 my
where
e = €™ 4+€ = total energy of the created pair;
v = €/F
p = (€7 —€)/e = asymmetry coefficient;
\The functions ®., ®,, ¢ can be found in [Koko00]. /
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limits

-

€min
€mazx
Pmin
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4mec2
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0
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E(E —¢)

Zl/3

-

€Emin
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Energetic pairs and truncated energy loss rate

One may wish to take into account separately the high-energy pairs
emitted above a given threshold €.,; (miss detection, explicit

simulation ...).

Those pairs must be from the mean energy loss count.

dFE Ceut  do
i — n, 29 4 3
dew " t/G “ e € (3)

min

Nnat 18 the number of atoms per volume.
Then, the truncated total cross-section for emitting 'hard’ pairs is:

€max do-

O(Ea Ecut < € < 6ma:c> — / — de (4)

€cut de

- /
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The muon deflection angle is of the order of:

Above ~1000 TeV the LPM suppression mechanism may have an
effect.

- /
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-~

number of interactions per cm in Iron. (cut 100 MeV)

~

Tables for MUON - in Iron

= BREM X-sec (1/cm)
MUNU X-sec (1/cm)

PAIR X-sec (1/cm)

<

1

N

muon kinetic energy (GeV)

/
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-

1 TeV muon in 10 meter of Fe (field 5 tesla).

direct pair creation only

~

WORL

RUN
EVENT

NR
NR

1
18

28/9/0

N

/
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-

10 meter of Fe : muons 100 GeV, 1 TeV, 5 TeV.
right : direct pair creation + brems
left : brems only
WoRL EN NR o WoRL BENr NR wwo
100 cm 100 cm
— —

/
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LL

Muon photonuclear interaction

The inelastic interaction of muons with nuclei is important for high
muon energies £ > 10 TeV, at relatively high energy transfers
v/E > 1072, in particular, in light materials, from view—point of
the detector response for high energy muons, muon propagation

and muon-induced hadronic background.

Q2, v)

~

/
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dE/dx : Average energy loss for this process is almost lineary

increasing with energy, and at TeV muon energies constitutes
about 107 in standard rock.

differential cross section : The main contribution to the cross

section do/dv and energy loss is given by low Q?-region :
Q* < 1 GeV?

Most widely used are the expressions given by Borog and Petrukhin
IBOR75| and Bezrukov and Bugaev [BEZS81]. Results of these
authors agree within 10% for differential cross section and within
about 5% for the average energy loss (if the same photonuclear

cross section o, is used in calculations).
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Theoretical estimates show that inelastic muon scattering gives,
along with multiple Coulomb scattering, appreciable contribution
to muon deflection (and dominates at large angles).

see [Koko0O] for a review of Borog and Petrukhin cross section.
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