

Pair-instability supernovae and Gamma-ray bursts

Andrey Baranov Supervisor: Pascal Chardonnet

LAPTH, Université de Savoie, Annecy-le-Vieux, France Université de Nice Sophia Antipolis, Nice, France

July 2012, Stockholm

GRB

• 1 event every 3 days in average

Cosmological phenomena

• Energy budget: 10⁵¹ - 10⁵⁴ ergs

• Timescale of the prompt emission: 1-100 sec

GRB

[S. Vaughan et al. (2006)]

GRB-SN connection

Relative number of GRBs to Ibc SNe is about
0.4% - 3% [Guetta and Della Valle, 2007]

• Some GRBs are associated with Ic SNe

• Long GRB and core-collapse supernovae have different environments [Fruchter et al. 2006]

Specific environment of GRBs

• GRB hosts are low in luminosity and low in metal abundances [Modjaz et al. (2007)]

 The environment of every broad-lined SN Ic that had no GRB is more metal rich than the site of any broad-lined SN Ic where a GRB was detected [Modjaz et al. (2007)]

Metallicity

Spectral properties of GRBs

[Kaneko et al., The Complete Spectral Catalog of Bright BATSE Gamma-Ray Bursts (2006)]

Temporal properties of GRBs

[F. Quilligan et al. (2002)]

Temporal properties of GRBs

[F. Quilligan et al. (2002)]

Pair-instability SN as possible candidate

[P. Chardonnet, V. Chechetkin and L.Titarchuk, 2009]

• Explosive process different from core-collapse SN

• Low metallicity environment

• Energy budget is about 10⁵³ ergs

Pair-instability SN

Numerical simulations

Envelope? of He and H

Oxygen core ~100 M_{\odot}

• Spherical symmetry

• Computation of the core only

• Polytrope with $\gamma = 4/3$ P=K ρ^{γ}

System of equations

$$\begin{cases} \partial r/\partial t &= v \\ \partial v/\partial t &= -Gm/r^2 - 4\pi r^2 (\partial P/\partial m) \\ \partial T/\partial t &= (-4\pi \frac{\partial (r^2 v)}{\partial m} T(\partial P/\partial T)_{\rho} + \varepsilon_{nucl} - \varepsilon_{\nu})/(\partial E/\partial \rho)_{\rho} \\ P(\rho, T, Y_i) &= EOS(\rho, T, Y_i) \\ \dots \\ dY_j/dt &= Y_k Y_l \rho R_{jk,l} - Y_j Y_l \rho R_{jl,m} + Y_i \lambda_{i,j} - Y_j \lambda_{j,k} \\ \dots \end{cases}$$

Nuclear reactions

M/M_{\odot}	$\rho_c, 10^5 g/cc$	T_{max}, keV	$E_{nucl}, 10^{52} \text{ ergs}$	fate
60	0.87	352	2.23	explosion
60	1.15	351	2.25	explosion
78	0.60		—	$\operatorname{collapse}$
78	2.00			$\operatorname{collapse}$
78	3.00	330	2.46	explosion
100	1.00			$\operatorname{collapse}$
100	1.65		—	$\operatorname{collapse}$
100	2.00		—	$\operatorname{collapse}$
100	2.25		—	$\operatorname{collapse}$
100	2.40	463	5.11	explosion
100	2.50	421	4.80	explosion
100	2.65	371	4.12	explosion
112	1.00		—	$\operatorname{collapse}$
112	1.50		—	$\operatorname{collapse}$
112	2.00	470	5.46	\exp losion
125	1.00		—	$\operatorname{collapse}$
125	1.50		—	$\operatorname{collapse}$

M/M_{\odot}	$\rho_c, 10^5 g/cc$	T_{max}, keV	$E_{nucl}, 10^{52} \text{ ergs}$	fate
60	0.87	352	2.23	explosion
60	1.15	351	2.25	explosion
78	0.60	—		$\operatorname{collapse}$
78	2.00	—		$\operatorname{collapse}$
78	3.00	330	2.46	explosion
100	1.00	—	—	$\operatorname{collapse}$
100	1.65	—	—	$\operatorname{collapse}$
100	2.00	—	—	$\operatorname{collapse}$
100	2.25	—	—	$\operatorname{collapse}$
100	2.40	463	5.11	explosion
100	2.50	421	4.80	\exp
100	2.65	371	4.12	\exp
112	1.00	—	—	$\operatorname{collapse}$
112	1.50	—	—	$\operatorname{collapse}$
112	2.00	470	5.46	\exp
125	1.00	—		$\operatorname{collapse}$
125	1.50			$\operatorname{collapse}$

Spectral properties of GRBs

[Kaneko et al., The Complete Spectral Catalog of Bright BATSE Gamma-Ray Bursts (2006)]

M/M_{\odot}	$\rho_c, 10^5 g/cc$	T_{max}, keV	$E_{nucl}, 10^{52}$	ergs fate
60	0.87	352	2.23	explosion
60	1.15	351	2.25	explosion
78	0.60		—	$\operatorname{collapse}$
78	2.00		—	collapse
78	3.00	330	2.46	explosion
100	1.00		—	$\operatorname{collapse}$
100	1.65		—	$\operatorname{collapse}$
100	2.00		—	$\operatorname{collapse}$
100	2.25		—	$\operatorname{collapse}$
100	2.40	463	5.11	explosion
100	2.50	421	4.80	explosion
100	2.65	371	4.12	explosion
112	1.00			$\operatorname{collapse}$
112	1.50		—	$\operatorname{collapse}$
112	2.00	470	5.46	explosion
125	1.00		—	$\operatorname{collapse}$
125	1.50			$\operatorname{collapse}$

On a physical interpretation of the Amati Relation

Amati relation from [L. Amati, F. Frontera and C. Guidorzi (2009)]

On a physical interpretation of the Amati Relation

Amati relation from [L. Amati, F. Frontera and C. Guidorzi (2009)]

Temporal properties of GRBs

Possible explanation of variability

Example of simulation in 2D

Some predictions

• Relative number of GRBs to Ibc SNe is about 0.4% - 3% [Guetta and Della Valle (2007)]. Using Salpeter's function $dN \propto M^{-2.35} dM$, a typical mass of GRB progenitor $\sim 200 M_{\odot}$, and $\sim 20 M_{\odot}$ for the SN, one can obtain that the GRB-Sne number ratio is about 0.4% [Chardonnet et al. 2009]

• PISNe are related to POP III stars. It is expected to have more GRBs with high z

Conclusions

- New scenario of GRBs is proposed. Explosive phenomena different from core-collapse SN
- 1D simulations: peak energy, timescale and energy budget are consistent with parameters of GRBs
- Distribution of peak energy around 300 keV is exlained by temperatures of nuclear burning
- Amati relation could be related to the mass of the progenitor and to the mechanism of energy production

 Ongoing work: multidimensional simulations and spectra analysis

Thank you for your attention!

A1: Spectrum Black body component

[F. Ryde (2004)]

A2: On a physical interpretation of the Amati Relation

Since source of energy is nuclear burning $L \sim E_{Nucl} \sim M \cdot q, \quad [q] = \frac{ergs}{g \cdot s}$

A2: On a physical interpretation of the Amati Relation

Since source of energy is nuclear burning $L \sim E_{Nucl} \sim M \cdot q, \quad [q] = \frac{ergs}{g \cdot s}$ $\frac{dT}{dR} = \frac{3\kappa\rho L}{16\pi acT^3R^2}$

A2: On a physical interpretation of the Amati Relation

Since source of energy is nuclear burning $L \sim E_{Nucl} \sim M \cdot q, \quad [q] = \frac{ergs}{g \cdot s}$ $\frac{dT}{dR} = \frac{3\kappa\rho L}{16\pi a c T^3 R^2}$ $\frac{dT}{dR} \rightarrow \frac{T}{R}, \quad \rho \rightarrow \frac{M}{R^3}$ $T^4 \sim \frac{ML}{R^4} \sim E_{Nucl}^2$

A2: On a physical interpretation of the Amati Relation

Since source of energy is nuclear burning $L \sim E_{Nucl} \sim M \cdot q, \quad [q] = \frac{ergs}{q \cdot s}$ $\frac{dT}{dR} = \frac{3\kappa\rho L}{16\pi acT^3 R^2}$ $\frac{dT}{dR} \rightarrow \frac{T}{R}, \quad \rho \rightarrow \frac{M}{R^3}$ $T^4 \sim \frac{ML}{R^4} \sim E^2_{Nucl}$

 $T^2 \sim E_{Nucl}$