

R&D on Control Noises

B. Mours LAPP Annecy

- Motivations
- Examples of R&D

Virgo CITF Sensitivity

• Improves with time

• CITF Noise Budget

- f < 10 Hz Angular control noise

- 10 Hz < f < 200 Hz Input mode-cleaner noise

- f > 200 Hz Several peaks due to payloads internal resonance's

ÞTechnical Noises

TAMA Sensitivity

TAMA 300 Noise Budget

GREX meeting, Oct 10, 2002

LIGO (Livingston) Sensitivity

- Designed sensitivity not yet reached, especially at low frequency.
- The Low frequency is the most interesting part for the G.W. physics

Why do we have technical noises?

Simple Control schemes...

EM2 Length drift contro NS an 300 m (digital) cavity orn cavity To input (NS amo) econtrol control nicritati on Injection-locked 10 m Mode cleaner control 10 W laser (di sital) To End Mirror Differential motion BS orientation control (8L.) Stear 20 MHz (1) control alignmen A. control jection looking (divital 024 300 m arm cavity (WE arm) EMI **FM** POI WE arm cavit Virgo Vin O # DIMHZ alignment control 12 MHz rine cavit Interference fringe NPRO control (%) 700 mW From alionation controllier, EM To MC 0 Gravitational wave signal (δL_{-}) alionm OIH. (MC mass loop) Laser frequency stabilization Common motion (Feed around loop) control (8/...)

Fabry-Perot-Michelson interferometer with an arm length of 300 m

...are not so simple:

Many addition loops : several hundred fast control channels digitized

• The low frequency is the most difficult area

- Many controls act in the low frequency part
- Steep slope at low frequency

CITF Calibration Changes

Calibration line monitoring:

- Up to a factor 2 change over 3 days.
- Calibration lines amplitude correlated with power fluctuations.
- Power fluctuations and other effects induce variations in the shape of the closed loop Transfer Function:
 - Challenge for the data analysis
 - Sensitivity losses due to 'technical noise'

GREX meeting, Oct 10, 2002

TAMA 300 SNR Variation

GREX meeting, Oct 10, 2002

- It takes time to tune a detector
- It is difficult to reach the designed sensitivity
- The operation condition are not so stable
- We do have a full list of technical noises, especially at low frequency

Þ R&D on control noises would help

Noise Control R&D

• The Detector commissioning is the prime R&D activity

...But additional R&D in the labs are need

IOII An Example of Noise Control R&D

Redesign the main locking loops of Virgo:

• Improve the analog electronic:

- ◆ Better immunization to E.M. noise
- ◆ Better dynamic

• Improve the digital front end:

◆ ADC with more bits and less noise

• Reduce the time delay between sensing and actuators:

- ◆ Increase the frequency of the control loops
- Reduce the number of elements in the pipeline
- Increase the computing resources to support:
 - more complex filters
 - more complex strategies

Photodiode Noise

• The Photodiode electronic noise did not limit the Virgo CITF sensitivity:

Lock Acquisition Issue

- Signals to lock cavities are available only for short time
 - Example CITF lock:

• Solution: Try to extend the time when the error signal is available

IOII Increase the error signal availability

• Reduce the noise coming for misalignments:

- ◆ Better electronic (analog and digital)
- Removing some seismic noise at the sensor level?
- Better model for the alignment coupling

• Reduce the various offsets in the control loop

- ♦ Using better electronic
- By developing procedures to monitor them

• Better electronic to allow interferometer DC readout?

- It takes time to reach the design sensitivity
- To see the fundamental noises, we need to solve the control noises
 - ♦ Better sensor
 - ◆ Better electronic
 - ♦ Better computer
 - ◆ Better procedure
 - Better models

• **R&D** on the control noises are needed