

Back-scattering / Back-reflection / Astigmatism / Spherical aberrations

Comparisons and Conclusions for Telescopes

Christelle Buy/ Matteo Barsuglia 05/12/10

Definitions

• Fraction of the incident beam back-scattered by the mirrors (photodiodes, beam dumps) and recombine with the main beam:

$$f_{sc} = \frac{P_{sc}}{P_{in}} = BRDF \frac{\lambda^2}{\pi \omega_0^2}$$

• For lenses, the back-reflection dominates:

$$f_{sc} = R_{AR} C_{00}$$

• Field back-scattered or back-reflected:

$$h_{sc} = K \sqrt{f_{sc}} \times \sin \phi_{sc}$$

Lenses

• Back-scattered light (VIR-642A-08 – Benjamin Canuel)

Lenses	Integrated scattering	fsc	$K_{\rm det}\sqrt{f_{sc}}$	Before OMC
Optosigma – Plano Convex f=200 mm	80-200 ppm			$K_{end} = 1 \times 10^{-14}$ By considering that
Optosigma – Plano Convex f=300 mm	25-60 ppm			$\omega_0 = 30 \mu m$
CVI Bi Convex f=200 mm	15-40 ppm			
CVI Bi Convex f=500 mm	30-40 ppm			
SDB_L1 Plano Convex f=2059.5 mm	11 ppm	7 X 10 ⁻¹⁰	2.6 x 10 ⁻¹⁹	

Weak Scattering (BRDF) – But really negligible than back-reflection?

Lenses

• Back-reflected light (VIR-369A-08 – Julien Marque / VIR-NOT-070A-08 – Edwige Tournefier)

Lenses	C _{oo}	fsc	$K_{\rm det}\sqrt{f_{sc}}$
SDB_L1 – Plano Convex f=2059.5 mm	ı ppm	10 ⁻⁹	3 X 10 ⁻¹⁹
SDB_L3 – Plano Convex f=448.7 mm	10 000 ppm	10 ⁻⁵	3 X 10 ⁻¹⁷

Tilt lenses should decrease the back-reflected which couples with the main beam Experimentally, no effect

Back reflected light not really play a role

• Back-reflected light (Extrapolation to the end benches)

Lenses	C _{oo}	fsc	$K_{end} \sqrt{f_{sc}}$
SDB_L1 – Plano Convex f=2059.5 mm	ı ppm	10 ⁻⁹	1.9X 10 ⁻²²
SDB_L3 – Plano Convex f=448.7 mm	10 000 ppm	10 ⁻⁵	1.9 X 10 ⁻²⁰

- Surface quality (typically for detection lenses and end benches lenses)
 - Surface flatness: λ/10
 - Surface quality: 20-10
 - Surface roughness: 10 Å rms
 - AR coating: 10⁻³

Spherical mirrors

• Back-scattered light (VIR-642A-08 – Benjamin Canuel)

Mirrors	Integrated scattering	fsc	$K_{\rm det}\sqrt{f_{sc}}$	$K_{end} \sqrt{f_{sc}}$	By considering that
CVI substrate (fused silica) coated by LMA	60-100 ppm	3.8 x 10 ⁻⁹	6.2x 10 ⁻¹⁹	3.7X 10 ⁻²²	$\omega_0 = 30 \mu m$ $K_{end} = 0.6 \times 10^{-17}$
General Optics super polished coated by LMA	15-45 ppm	9.5x 10 ⁻¹⁰	3 X 10 ⁻¹⁹	1.8X 10 ⁻²²	

Spherical mirrors

- Surface quality (typically for CVI mirrors)
 - Surface flatness: λ/10
 - Surface quality: 10-5
 - Surface roughness: ~ 1 Å rms ? To be confirmed

Parabolic mirrors

• Back-scattered light (Substrate-Optical Surface / Coating - LMA)

Mirrors	Integrated scattering	fsc	$K_{inj}\sqrt{f_{sc}}$	$K_{\rm det} \sqrt{f_{sc}}$	$K_{_{end}}\sqrt{f_{_{sc}}}$	$K_{inj} = 3.3 \times 10^{-20}$ By considering that
SIB_M5 f=74.48 mm	89 ppm	5.6 x 10 ⁻⁹	2.5X 10 ⁻²⁴	7.5x 10 ⁻¹⁹	4.5X 10 ⁻²²	$\omega_0 = 50 \mu m$
SIB_M6 f=604 mm	323 ppm	2X 10 ⁻⁸	4.8 x 10 ⁻²⁴	1.4X 10 ⁻¹⁸	8.6x 10 ⁻²²	

Parabolic mirrors

- Surface quality (Substrate-Optical Surface / Coating LMA)
 - Surface flatness: $\lambda/10$ (SIB_M5) and $\lambda/9$ (SIB_M6)
 - Surface quality: 40-20 (SIB_M5) and 20-10 (SIB_M6)
 - Surface roughness: 9 Å rms (SIB_M5) and 15 Å rms (SIB_M₆)

Surface quality less good than spherical mirrors, but back-scattering comparable

Parabolic mirrors

- Comparison with parabolic mirrors on LIGO end benches
 - Surface flatness: $\lambda/10$ (SIB_M5) and $\lambda/9$ (SIB_M6) $\lambda/4$ (PPM) and $\lambda/4$ (SPM)
 - Surface quality: 40-20 (SIB_M5) and 20-10 (SIB_M6) 60-40 (PPM) and 60-40 (SPM)
 - Surface roughness: 9 Å rms (SIB_M5) and 15 Å rms (SIB_M6) < 100 Å rms (PPM) and
 < 100 Å rms (SPM)

Surface quality less good than VIRGO parabolic mirrors

Spherical aberrations

• Lenses and Spherical mirrors induce spherical aberrations. Actually, on the end benches, the doublet limit these aberrations and the Seidel term is 2.10⁻⁵.

• Spherical mirrors could induce astigmatism, which may be necessary for the MMT on the injection bench, but not for detection benches.

Confrontation of the results

	BRDF ou C _{oo}	f _{sc}
SDB_L1 – Plano Convex f=2059.5 mm	ı ppm	10 ⁻⁹
SDB_L3 – Plano Convex f=448.7 mm	10 000 ppm	10 ⁻⁵
CVI substrate (fused silica) coated by LMA	60-100 ppm	3.8 x 10⁻9
General Optics super polished coated by LMA	15-45 ppm	9.5x 10 ⁻¹⁰
SIB_M5 f=74.48 mm	89 ppm	5.6 x 10 ⁻⁹
SIB_M6 f=604 mm 323 ppm		2X 10 ⁻⁸

Constraints for AdV (VIR-NOT-070A-08):

- End benches: $f_{sc} < 10^{-8}$
- SDB: f_{sc}<4.10⁻⁷

Theory / Experimental constraints seem to say that parabolic mirrors are the best choice.

Summary

- End benches:
 - Replace lenses by parabolic mirrors?
 - Use lenses only for quadrant photodiodes waist size adaptation
 - Increase the waist size for the back scattering light

- Detection benches:
 - Replace lenses by parabolic mirrors?

