
Notes de cours de PHYS 708
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2.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Justifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3



4

2.3 Exemple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Transformée de Fourier 21

4 Quelques propriétés des transformées de Fourier 22

5 Transformée de Fourier et énergie des signaux 23
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4.4 Signaux à support en fréquence non borné . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Reconstruction d’un signal 30

6 Quantification 30
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1.2 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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1
Introduction

1 Definitions et notions de base

1.1 Signal et bruit

Un signal est la représentation d’une information (souvent dépendant d’un paramètre, par exemple le temps,
mais pas forcément). Cette représentation a un support physique. Ce support sert à transmettre l’information.

Exemples
– Signal électrique (support) sortant d’un microphone et représentant une information (parole, musique,...)
– Images (penser à l’astronomie) → signal 2D
– Vidéos
– Débit d’un fleuve en fonction du temps
– EEG, ECG (biologie)
–
Bruit = phénomène perturbant la perception ou l’interprétation d’un signal

1.2 Traitement du signal

Techniques pour créer, transformer et analyser les signaux en vue de leur exploitation. On se bat contre
le bruit, on veut conserver et/ou extraire le maximum d’information utile d’un signal généralement bruité.

7



8 Chapitre 1 – Introduction

Le traitement du signal comprend par exemple : le contrôle, le filtrage, la compression de données, la
transmission de données, le débruitage, la déconvolution, la prédiction, l’identification, la classification,...

Création de signaux

Synthèse : combinaison de signaux élémentaires pour créer des signaux complexes. Par exemple écrire une
lettre. Autre exemple, synthèse d’un signal temporel par ajout de signaux purs monochromatiques.

Modulation : on adapte un signal au canal de transmission. Par exemple modulation de fréquence ou mo-
dulation d’amplitude

Recherche personnelle : rechercher des exemples de modulation

Transformation de signaux

Adaptation du signal aux besoins
– Filtrage : élimnation de certaines portions ou composantes.

– Craquements dans un vieil enregistrement
– Annulation d’écho
– Filtre pour la reconnaissance de forme / détection de contours

– Codage : sécurité, signaux numériques de la TNT,
– Compression : jpeg, mp3, mpeg4

Analyse de signaux

Liée à ou utilisée pour l’interprétation des signaux

– Détection : séparation d’un signal du bruit de fond, extraction de composantes utiles
– Identification et classification : reconnaissance de la parole, vision artificielle (identification de produits

défectueux sur une châıne de production)
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Fig. 1.1: Exemple d’évolution temporelle et de spectre d’un son voisé (”i”, image de gauche) et non voisé (”ch”, image
de droite)

1.3 Notions de base

Dans tout ce qui suit, on prendra très souvent des signaux dépendant du temps mais il est bien entendu que
les notions présentées peuvent être adaptées aux signaux dépendant d’un paramètre quelconque et quelque soit
leur dimension.

Déterministe ou aléatoire ?

Signal peut être
– déterministe : on peut concevoir un modèle qui prévoit le signal au cours du temps.
– stochastique ou aléatoire (c’est la même chose) : l’évolution du signal est aléatoire, on ne peut pas la

prédire à priori. Outils statistiques nécessaires.
Un signal aléatoire peut en outre être stationnaire, c’est à dire que ses propriétés statistiques ne changent

pas au cours du temps.

Fig. 1.2: Exemple de signal déterministe (image de gauche, en haut), aléatoire (image de gauche, en bas) non stationnaire
(image de droite en haut) stationnaire (image de droite en bas)
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Energie et puissance d’un signal

On utilise souvent la notion d’énergie et de puissance d’un signal. Ces notions viennent par extension d’un
cas pratique. Imaginons une tension variable v aux bornes d’une résistance ρ = 1 Ω. La puissance instantannée
sera P = v2/ρ. Par convention, on a gardé cette notion de “puissance” comme une quantité proportionnelle à
l’amplitude au carré, et celle associée “d’énergie” dans le cas de signaux non électriques.

En traitement du signal, l’énergie et la puissance d’un signal a(t) non périodique sont donc naturellement
données par :

Es =
∫ +∞

−∞
|a(t)|2 dt, Ps = lim

T→∞

1
2T

∫ T

−T
|a(t)|2 dt (1.1)

Dans le cas d’un signal périodique, on calcule la puissance sur une période.

Cette puissance est bien homogène à [E/t].

Rapport signal sur bruit

Vous verrez plus précisément dans le cours ”Signaux et bruit” cette notion de rapport signal sur bruit.

Tout signal mesuré comporte du bruit, c’est à dire une composante aléatoire. Notion de bruit dépend du
contexte. Par exemple

– pour l’ingénieur télécom,
– Ondes radio d’un satellite = signal
– Ondes radio d’une source astrophysique (pulsar...) = bruit

– pour l’astrophysicien,
– Ondes radio d’un satellite = bruit
– Ondes radio d’une source astrophysique (pulsar...) = signal

Un signal a(t) dépendant du temps contient une composante aléatoire b(t) (bruit) et une composante
déterministe s(t) (signal) :

a(t) = s(t) + b(t) (1.2)

Introduit la notion de rapport signal sur bruit pour quantifier la qualité d’un signal :

RS/B =
Ps
Pb

(1.3)

Ps est la puissance du signal, Pb celle du bruit.

2 Classification des signaux

Classification
– dimensionnelle :

– signal 1D monodimensionnel, fonction d’un seul paramètre (pas forcément t)
– signal 2D bidimensionnel : image
– signal 3D tridimensionnel : film = ensembles d’images en fonction du temps

– comportementale ou phénoménologique : selon que le signal est déterministe ou non, stationnaire ou
non, etc... voir figure 1.3

Recherche personnelle : faire des recherches sur l’ergodicité

– énergétique :
– signaux à énergie finie (puissance moyenne nulle) = généralement signaux physiques
– infinie (puissance moyenne non nulle) : c’est le cas des signaux périodiques
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Fig. 1.3: Classification comportementale des signaux

3 Quelques signaux utiles

– échelon = établissement instantané d’un régime continu

γ(t) =
{

0 pour t < 0
1 pour t > 0

– porte (ou rectangle) = différence de deux échelons

Π(t) =
{

1 pour |t| ≤ τ
2

0 ailleurs

avec τ la largeur de la porte.
– exponentielle décroissante : y(t) = γ(t).e−at avec a > 0
– signaux périodiques simples : sinus...

4 Corrélations

4.1 Intercorrélation

Définition

On veut comparer un signal x(t) à un signal y(t), éventuellement en les décalant l’un par rapport à l’autre.
L’intercorrélation mesure la similitude entre ces deux signaux. Pour des signaux réels (pas complexes), la
fonction d’intercorrélation s’écrit :

– pour les signaux à énergie finie

Cxy(τ) =
∫ +∞

−∞
x(t).y(t− τ)dt (1.4)

– pour les signaux à énergie infinie :

Cxy(τ) = lim
T→+∞

1
T

∫ + T
2

−T
2

x(t).y(t− τ)dt (1.5)

Interprétation

On veut comparer la forme de deux signaux. On va supposer qu’ils ont la même énergie totale, et qu’on
peut la calculer, évidemment, c’est à dire qu’elle n’est pas infinie.
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Commençons par un signal simple, un signal porte. Les deux paramètres que l’on peut faire varier sont
la largeur de la porte (T ) et la hauteur (A). L’énergie (voir sa définition ci-dessus) pour un signal porte est
simplement (faire le détail du calcul...)

ET = A2.T (1.6)

La figure 1.4 montre deux signaux porte ayant la même énergie mais avec des valeurs de T différentes.

Fig. 1.4: Exemple de signaux ”porte”. Si les deux signaux ont la même énergie, leur intercorrélation est maximale lorsqu’ils sont
identiques

La valeur de l’intercorrélation entre ces deux signaux si on suppose un décalage τ = 0 et T2 < T1 est :

Cxy = A1.A2.T2 (1.7)

Or comme les deux signaux ont la même énergie, on a A2
1.T1 = A2

2.T2 ⇒ A2 = A1

√
T1
T2

donc l’intercorrélation
s’écrit

Cxy = A1.
√
T1.T2 (1.8)

Puisque T2 < T1, ce produit sera maximal pour T2 = T1, c’est à dire lorsque les deux signaux seront
identiques. Un raisonnement similaire peut être fait lorsque T2 > T1, et on obtient le même résultat. On voit
bien intuitivement que si l’on a deux fonctions bornées en temps (pas forcément des fonctions porte), on peut
les découper en petits éléments dt et faire le même raisonnement que ci-dessus. L’intercorrélation sera maximale
pour deux fonctions ayant exactement la même forme.

Imaginons que nous ayons une forme d’onde donnée (figure 1.5) et que nous cherchions à savoir si elle se
cache dans un signal bruité. Il suffit de décaler cette fonction d’une valeur τ et de calculer l’intercorrélation avec
le signal.

La valeur Cxx(τ) sera maximale lorsque le décalage correspondra à la position exacte où les deux signaux
se ressemblent le plus.

4.2 Cas particulier : autocorrélation

L’autocorrélation est une intercorrélation du signal avec une version décalée de lui-même :
– pour les signaux à énergie finie

Cxx(τ) =
∫ +∞

−∞
x(t).x(t− τ)dt (1.9)

– pour les signaux à énergie infinie :

Cxx(τ) = lim
T→+∞

1
T

∫ + T
2

−T
2

x(t).x(t− τ)dt (1.10)
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Fig. 1.5: On calcule la valeur absolue de l’intercorrélation |a ? s(τ)| (graphe du bas) entre deux signaux a(t) et s(t) en fonction
d’un décalage τ de s(t). La valeur maximale est obtenue lorsque s(t) ”ressemble” le plus à a(t). Ici, on a construit a(t)
comme la somme de s(t) commençant à un temps τ0 et d’un signal aléatoire gaussien.

elle indique pour quelles valeurs du décalage τ le signal ”se ressemble”. Ceci sert à détecter des régularités
du signal pas forcément visibles à l’oeil. Propriétés :

– |Cxx(τ)| 6 Cxx(0). Valeur max pour décalage nul
– x(t) périodique ⇒ Cxx(t) périodique, même période
– Cxx(t) paire pour des signaux réels.

5 Introduction aux distributions

5.1 Problème ”théorique”

Petit problème ”théorique” : soit le schéma électrique de la figure 1.6 qui permet de charger ou décharger
un condensateur ”instantanément” si l’on suppose que tous les composants et éléments sont idéaux.

Fig. 1.6: Charge instantanée (en théorie...) d’un condensateur

Si l’on ferme l’interrupteur, le condensateur initialement déchargé se charge instantanément. La tension à
ses bornes devient donc égale à E en un temps nul. Elle s’écrit v(t) = (0 si t < 0, E si t > 0), c’est une fonction
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discontinue.

Question : à quoi est égal le courant i(t) ?

i(t) = C
dv

dt
(1.11)

donc i(t) = 0 partout sauf en t = 0 puisque v(t) n’est pas continue en ce point. Pourtant, le condensateur
s’est chargé, il y a eu transfert de charge depuis le générateur E. Et l’intégrale de i(t) représente justement cette
charge : ∫ +∞

−∞
i(t)dt = QC = C.E (1.12)

i(t) ne peut pas être infinie en t = 0, sinon l’intégrale ne serait pas définie et on pourrait avoir des choses
bizarres comme 2i(t) = i(t)...

5.2 Distribution de Dirac

La fonction i(t) n’en est pas une, c’est une extension du concept de fonction que l’on nomme une distribution.
Son petit nom est distribution de Dirac. On peut la voir comme la limite d’une fonction porte lorsque l’on fait
tendre T vers 0 tout en gardant l’aire constante. On peut aussi remplacer ”porte” par ”gaussienne” et faire la
même chose. La forme de la fonction de départ n’est pas critique.

Définition
Si f est une fonction, la distribution de Dirac δ (appelée aussi impulsion de Dirac) est définie par la
propriété suivante : ∫ +∞

−∞
f(t).δ(t)dt = f(0) (1.13)

On dit aussi que la distribution de Dirac agit sur la fonction f :

δ(f) = f(0) (1.14)

Aucune ”fonction” ne vérifie cette propriété. On représente la distribution de Dirac par une flèche sur l’axe
des ordonnées en t = 0 (figure 1.7).

Fig. 1.7: Une distribution de Dirac est la limite d’une fonction porte dont l’aire reste constante mais la hauteur tend vers l’infini

Propriétés

– Dirac = signal de durée nulle et d’énergie finie, égale à 1
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– On note (abus de notation) δt1 = δ(t− t1), impulsion de Dirac à l’instant t1. Appliquée à une fonction ϕ,
on a

δt1(ϕ) = ϕ(t1) (1.15)

– δ(f1 + f2) = δ(f1) + δ(f2)
– δ(λ.f) = λ.δ(f)
– la distribution de Dirac peut être vue comme la dérivée d’un échelon

5.3 Peigne de Dirac

Somme infinie d’impulsions de Dirac régulièrement espacées :

x =
+∞∑

m=−∞
δ(t−mT ) (1.16)
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2
Représentation fréquentielle des signaux

1 Introduction

1.1 Domaine temporel, domaine fréquentiel (ou spectral)

Phénomène P (α) dépendant du paramètre α (le temps la plupart du... temps). Si P (α) est périodique,
fréquence f = nombre de fois que le phénomène se reproduit par unité de α.

Exemple avec le temps. Si T est la période, f = 1/T . Unité : le Hertz (= s−1).

Pour un son : aigu = hautes fréquences, grave = basses fréquences.

.... ajouter figure fréquence .....

La fréquence apporte un certain type d’information.

Exemples :
– Son : voix, musique,...
– Onde lumineuse : correspondance couleurs ⇔ longueur d’onde ou fréquence
– Image : surfaces = basses fréquences, contours = hautes fréquences. On parle de fréquences ”spatiales”.

Fig. 2.1: Exemple de filtrage d’une image. On a enlevé les fréquences basses (les aplats) dans l’image de droite

17
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1.2 Représentation fréquentielle

Interprétation de la fréquence d’un signal parfois plus utile que la forme de sa variation au cours du temps
→ représentation fréquentielle. Comment représenter l’information de fréquence d’un signal ?

Un signal a-t-il une ”composition” en fréquence ?
– signal sinusöıdal x(t) = X0 sin(2πf0t) −→ fréquence = f0... facile !
– et pour les signaux suivants :

c’est moins facile...
Pourtant, si on ajoute plusieurs signaux monochromatiques (sinusöıdes simples) de fréquence différentes, on

obtient par exemple :

Fig. 2.2:

Des signaux complexes peuvent être rerésentés par une somme de sinus (ou cosinus d’ailleurs... pourquoi ?)

2 Décomposition en série de Fourier

Tout signal périodique de période T peut se décomposer en une somme de fonctions sinus et cosinus
de fréquences multiples de f0 = 1/T . C’est la décomposition en série de Fourier. f0 est la fréquence
fondamentale.

Cette décomposition constitue le lien entre la représentation temporelle d’un signal et sa représentation
fréquentielle.
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2.1 Définition

Forme trigonométrique

Signal x(t) périodique, de période T peut s’écrire

x(t) =
A0

2
+

+∞∑
n=1

[
An sin

(
n

2π
T
t

)
+Bn cos

(
n

2π
T
t

)]
(2.1)

On peut calculer les coefficients de la série :

An =
2
T

∫ T/2

−T/2
x(t) sin

(
n

2π
T
t

)
dt Bn =

2
T

∫ T/2

−T/2
x(t) cos

(
n

2π
T
t

)
dt (2.2)

Forme complexe

Utilise l’expression des sinus et cosinus sous forme d’exponentielles (formule de Moivre exp(jθ) = cos θ +
j. sin θ) :

cos θ =
exp(jθ) + exp(−jθ)

2
sin θ =

exp(jθ)− exp(−jθ)
2j

= j.
exp(−jθ)− exp(jθ)

2
(2.3)

Desquelles on peut déduire la décomposition de x(t) en somme d’expo. :

x(t) =
A0

2
+

1
2

+∞∑
n=1

[
(An − jBn) exp

(
jn

2π
T
t

)
+ (An + jBn) exp

(
−jn2π

T
t

)]
(2.4)

Si on pose

C0 =
A0

2
(2.5)

Cn =
An − jBn

2
si n > 0 (2.6)

Cn =
A(−n) + jB(−n)

2
si n < 0 (2.7)

(2.8)

On peut écrire une forme simple de la décomposition :

x(t) =
n=+∞∑
n=−∞

Cn exp
(
jn

2π
T
t

)
(2.9)

avec une expression des coefficients Cn :

Cn =
1
T

∫ T/2

−T/2
x(t) exp

(
−jn2π

T
t

)
dt (2.10)

On appelle les Cn les coefficients de Fourier de x(t). C’est leur ensemble qui forme la représentation
fréquentielle du signal x(t).
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2.2 Justifications

Pourquoi les nombres complexes ?

Plus faciles à manipuler pour des phénomènes périodiques. Exemple, lien entre courant et tension dans des
circuits contenant R, L et C :

résistance inductance capacité
en utilsant des réels v = Ri v = L didt i = C dv

dt

en utilisant des complexes et v = Zi v = Ri v = (jLω)i v = −j
Cω .i

L’utilisation de complexes permet de remplacer des équations différentielles par des expressions et équations
algébriques.

Interprétation vectorielle

On peut se représenter une transformée de Fourier comme la décomposition d’un vecteur sur une base dans
un espace vectoriel. On fait pour commencer une analogie, les vecteurs de l’espace vectoriel étant des fonctions.
Dans un espace vectoriel habituel, de dimension N , un vecteur ~v peut s’écrire sur une base de N vecteurs ~ui :

~v =
N∑
i=1

ci~vi (2.11)

où les ci sont les coordonnées de ~v dans la base ~ui.

On décide de se placer dans l’espace abstrait des ”fonctions périodiques de période T”, tel que toute fonction
est appelée ”vecteur”. L’expression 2.9 ressemble à la décomposition d’un vecteur (x(t)) sur une base dont les
vecteurs de base seraient les fonctions exp

(
−jn 2π

T t
)

et les Cn les coordonnées de ce vecteur.

Un ”petit détail” est que le nombre de vecteurs de base est ici infini...

Quand on parle de ”base” dans un espace vectoriel, on définit souvent un produit scalaire, parce qu’il faut
bien exprimer le fait que deux vecteurs sont orthogonaux. Dans notre cas, le produit scalaire est défini par

〈f, g〉 =
1
T

∫ T/2

−T/2
f(t).g∗(t)dt (2.12)

où le signe ”∗” désigne la conjugaison complexe.

Dans un espace vectoriel habituel, pour calculer la coordonnée ci du vecteur ~v selon la direction du vecteur
de base ~ui, on réalise le produit scalaire de ~v et de ~ui : ci = ~v.~ui. Ceci ne marche que si les vecteurs de base
sont orthogonaux.

On reconnait dans l’expression 2.10 des coefficients Cn un produit scalaire tel que définit ci-dessus. On peut
vérifier que les vecteurs de base sont orthogonaux entre eux en calculant le produit scalaire

〈
exp

(
−jn 2π

T t
)
, exp

(
−jm 2π

T t
)〉

.
Ce produit est nul pour n 6= m (d’accord, ce n’est pas immédiat... à compléter).

L’analogie que nous venons de développer peut se justifier rigoureusement et prend tout son sens dans le cas
de la transformée de Fourier que nous allons voir plus loin.

2.3 Exemple

Exemple, faisons la décomposition en série de Fourier de la fonction porte périodique PT (t), d’amplitude A
entre −t0/2 et +t0/2, 0 ailleurs, répété avec une période T .
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Les coefficients de la décomposition se calculent :

Cn =
1
T

∫ T/2

−T/2
PT (t) exp

(
−jn2π

T
t

)
dt (2.13)

=
1
T

∫ t0/2

−t0/2
A exp

(
−jn2π

T
t

)
dt (2.14)

=
A

T

[
− 1
jn 2π

T

exp
(
−jn2π

T
t

)]t0/2
−t0/2

(2.15)

=
A

T

1
n πT

[
− 1

2j
exp

(
−jn2π

T

t0
2

)
+

1
2j

exp
(
−jn2π

T

−t0
2

)]
(2.16)

(2.17)

L’expression entre crochets n’est rien d’autre que sin
(
nπt0
T

)
sous forme d’exponentielles complexes. On a

donc une expression simple des coefficients de Fourier :

Cn =
A

πn
sin
(
nπt0
T

)
(2.18)

Petit détail : dans le cas de C0, on trouve C0 = At0/T (faites le calcul !).

Et donc la fonction PT peut se décomposer en série de Fourier :

PT =
n=+∞∑
n=−∞

A

πn
sin
(
nπt0
T

)
exp

(
jn

2π
T
t

)
(2.19)

A faire en cours : représentation des Cn, spectre de raies...

3 Transformée de Fourier

Pour les signaux périodiques, ça fonctionne. Quid des signaux non périodiques ? Un signal non périodique
peut être vu comme un signal de période infinie. Dans la décomposition en série de Fourier, les fréquences des
fonctions sont des multiples de f0 = 1/T (= harmoniques de f0). Si T → ∞, f0 → 0, l’écart entre les raies du
spectre devient infiniment petit, la représentation fréquentielle devient continue.

On parle alors de transformée de Fourier.

Donner un exemple graphique

Passer du discret au continu, c’est passer de la somme à l’intégrale. Il nous faut déterminer la variable qui
varie dans la somme discrète 2.10 pour en faire notre variable d’intégration. Dans 2.9, la somme est réalisée sur
la variable n. Si par commodité on réécrit la somme en introduisant un facteur ∆n = (n+ 1)−n = 1 (ça semble
un peu artificiel, mais ça permet le passage à l’intégrale) :

x(t) =
n=+∞∑
n=−∞

Cn exp
(
jn

2π
T
t

)
∆n (2.20)

et si on pose ωn = 2πn/T (on reconnait la pulsation correspondant à l’harmonique n), on peut remplacer ∆n :

x(t) =
n=+∞∑
n=−∞

Cn exp
(
jn

2π
T
t

)
T

2π
∆ω (2.21)
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où ∆ω = ωn+1 − ωn est la différence de pulsation lorsqu’on passe d’une fonction harmonique à la suivante. Le
passage à l’intégrale est alors facile. Si ∆ω → 0 lorsqu’on augmente la période T (pour passer du cas périodique
au cas non périodique), on peut remplacer ∆ω par dω infinitésimal et écrire l’intégrale :

x(t) =
∫ +∞

−∞
C(ω) exp (jωt)

T

2π
dω (2.22)

Avec T → ∞. Les coefficients de Fourier ne dépendent plus d’une variable discrète n mais d’une variable
continue ω. Ils peuvent se calculer :

C(ω) =
1
T

∫ T/2

−T/2
x(t) exp (−jωt) dt (2.23)

Toujours avec T →∞. On voit que l’intégrale x(t) ne dépend plus de T puisque C(ω) ∼ 1/T et x(t) ∼ T . On
peut donc simplement éliminer ce paramètre infini qui ne joue finalement aucun rôle. De plus, on a l’habitude
de symétriser le facteur 1/2π, voir ci-dessous.

On définit la transformée de Fourier d’un signal x(t) (en utilisant des notations à peine différentes) par

X(ω) =
1√
2π

∫ ∞
−∞

x(t) exp (−j2πft) dt (2.24)

et on appelle la ”décomposition de Fourier” la transformée de Fourier inverse :

x(t) =
1√
2π

∫ ∞
−∞

X(ω) exp (j2πft) dt (2.25)

Notations

On notera la transformée de Fourier de x(t) et son inverse :

X(f) = F (x(t)) et x(t) = F−1 (X(ω))

4 Quelques propriétés des transformées de Fourier

– Linéarité : a.x(t) + b.y(t) TF−−→ a.X(f) + b.Y (f)

– Changement d’échelle : x(a.t) TF−−→
1
a
X(

f

a
)

contraction dans le domaine temporel = dilatation dans le domaine fréquentiel et inversement
– Dérivation :
– Intégration :
– Parité :

x(t) réelle paire TF−−→ X(f) réelle paire
x(t) réelle impaire TF−−→ X(f) imaginaire pur et impaire

– x(−t) TF−−→ X(−f)
– Signaux réels : Si x(t) est réel, alors X(f) = X(−f). Conséquence sur module et argument ?
– Signaux imaginaires purs : Si x(t) est imaginaire, alors X(f) = −X(−f)
– Décalage temporel : x(t− t0) TF−−→ exp(−j2πft0)X(f)
– Décalage fréquentiel : exp(j2πf0t)x(t) TF−−→ X(f − f0)
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Dualité de la TF

à voir en TD

5 Transformée de Fourier et énergie des signaux

Théorème de Parseval, que l’on va donner sans démonstration.

Dans le cas où les intégrales existent∫ +∞

−∞
|x(t)|2 dt =

∫ +∞

−∞
|X(f)|2 df (2.26)

Ce qui se traduit par : la transformée de Fourier conserve l’énergie du signal. C’est une transformation
unitaire.

L’une des questions qui se pose naturellement lorsqu’on étudie un signal est : “Quelle ”quantité” de signal est
présente à une fréquence f donnée ?”. La notion de quantité est ici volontairement laissée floue pour le moment.
Pour un signal déterministe (non aléatoire) x(t), la transformée de Fourier s̃(f) peut suffire à décrire une série
temporelle dans le domaine fréquentiel. Dans le cas d’un signal stochastique (série temporelle aléatoire), une
transformée de Fourier ne donne l’information que pour une réalisation de la série temporelle (un cas particulier).

La TF conservant l’énergie, on peut définir une notion d’énergie par unité de fréquence. C’est ce que l’on
appelle la densité spectrale d’énergie. On rappelle que l’énergie totale du signal est définie par

ET =
∫ +∞

−∞
|x(t)|2 dt (2.27)

et donc (Parseval) :

ET =
∫ +∞

−∞
|X(f)|2 df (2.28)

on définit naturellement d’après ce qui précède la densité spectrale d’énergie par

E(f) = |X(f)|2 (2.29)

mais comme on l’a vu, ceci n’a pas réellement d’utilité pour un signal stochastique. On définit la den-
sité spectrale d’énergie dans ce cas comme l’espérance mathématique (correspondant à un nombre infini de
réalisations du signal)

E(f) ≡ E
[∣∣∣X̃(f)

∣∣∣2]
bien entendu, seulement si cette espérance existe.

Pour définir la densité spectrale de puissance, on est tenté de prendre une moyenne temporelle de
l’énergie comme dans l’équation 1.1. Mais, toujours dans le cas stochastique, il faut faire attention au fait que
la fonction a(t) peut ne pas être de carré sommable et que X̃(f) peut ne pas être défini au sens des fonctions.
On arrive à donner une définition cohérente en considérant des fonctions tronquées

xT (t) ≡ { x(t) si |t| < T , 0 sinon }
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La définition de la densité spectrale de puissance est alors :

PX(f) ≡ lim
T→∞

E
[
|x̃T (f)|2

]
2T

(2.30)

Point intéressant, on montre que pour des processus stochastiques stationnaires, il y a une relation de Fourier
entre la densité spectrale de puissance et la fonction d’autocorrélation. C’est le théorème de Wiener-Khinchine :

PX(f) =
∫ +∞

−∞
Cxx(τ) e−i2πfτdτ

La plupart des auteurs utilisent d’ailleurs cette relation comme une définition de la densité spectrale de
puissance.

Dans la plupart des cas qui nous occuppent, la fonction x(t) est réelle et dans ce cas, la densité spectrale
P (f) est une fonction réelle, positive et paire. On peut donc utiliser ce que l’on nomme la densité spectrale de
puissance unilatérale

PSSX (f) = PX(f) + PX(−f) = 2.PX(f) (2.31)

6 Exemples

Exemple 1

x(t) =
{

1 si t ∈ [0;T ]
0 sinon

→ sinus cardinal

Exemple 2

exponentielle multiplié par échelon (voir paragraphe 3 du chapitre précédent) :

x(t) = γ(t). exp(−at) avec a > 1

7 TF au sens des distributions
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Passage du signal continu au signal numérique

Numérisation = passage d’une information continue x(t) (en temps et en amplitude) à un ensemble d’infor-
mations discrètes xi(tk), aussi bien en temps qu’en amplitude. Un signal numérique est une suite de valeurs,
codées sous forme binaire (suite de 0 et de 1).

1 Avantages et inconvénients de la numérisation

– Numériser = perdre de l’information
– Permet l’utilisation de machines de traitement de l’information (ordinateurs, processeurs,...)

– Flexibilité : on peut facilement modifier un logiciel, moins un montage électronique
– Puissance : les traitements complexes sur ordinateur sont devenus plus efficaces que les traitements

analogiques
– Coût

– Une fois numérisé, la transmission du signal est très robuste (0/1 codé en 0/5V, un ajout d’erreur sur la
tension ne change pas la valeur 0 ou 1)

Analogique et numérique ne peuvent pas se comparer en termes de qualité, chacun a ses utilisations.

2 Châıne de numérisation

Les étapes principales de numérisation d’un signal sont les suivantes :

25
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Echantillonnage

prélèvement du signal continu à des temps discrets tn séparés par un intervalle (généralement fixe) ∆t =
tn+1 − tn appelé période d’échantillonnage.

Résultat : suite de valeurs x(tn), tn = n.∆t.

Quantification

Chaque valeur x(tn) est transformée en une valeur approchée xe(tn) = m.q qui est un multiple entier m
d’une quantité élémentaire q. Cette quantité q est appelée échelon de quantification.

Codage

transforme l’entier m en un mot binaire exploité par un calculateur.

3 Echantillonnage

Echantillonnage idéal : prélèvement pendant un temps infiniment court des valeurs de x(t) aux temps
t = tn = n.∆t

Modélisation mathématique : produit de x(t) avec un peigne de Diracx∆t(t)

xe(t) = x(t).x∆t(t) = x(t).
n=+∞∑
n=−∞

δ(t− n∆t)

les propriétés du peigne de Dirac donnent :

xe(t) =
n=+∞∑
n=−∞

x(n∆t).δ(t− n∆t)
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4 Conséquences dans le domaine fréquentiel

4.1 Spectre du signal après échantillonnage idéal

Analogie stroboscopique

Supposons que nous réalisions l’échantillonnage à une fréquence fe d’un signal qui a une fréquence fonda-
mentale f0 plus grande que fe. Le fait de prendre des échantillons régulièrement espacés reconstruit un signal

qui a la même forme que le signal initial, mais de fréquence plus faible. L’effet est le même que lorsqu’on fait
de la stroboscopie. Dans le spectre, celà revient à déplacer une fréquence.

Justification mathématique, notion de convolution

Nécessité de la notion de convolution.

Convolution Soient deux signaux f(t) et g(t). On appelle produit de convolution l’intégrale suivante :

(f ∗ g)(t) =
∫ +∞

−∞
f(τ)g(t− τ)dτ =

∫ +∞

−∞
f(t− τ)g(τ)dτ (3.1)

Remarque : ça ressemble beaucoup à une corrélation, sauf qu’une des fonctions est inversée dans le temps.

Exemple : calcul du produit de convolution d’un signal porte par g(t) = e−atγ(t)

Pour des suites, on a un cas discret (peu utilisé mais utile pour comprendre) :

(f ∗ g)(n) =
+∞∑

m=−∞
f(n−m)g(m) (3.2)

Pour une valeur de n donnée, on peut comprendre cette expression comme une moyenne de tous les f(n)
pondérée par les différentes valeurs g(m) → ”moyenne mobile”.

Explication intuitive Si on fait le produit de convolution d’une fonction f par une impulsion de Dirac :

(f ∗ δa)(t) =
∫ +∞

−∞
f(t− τ)δa(τ)dτ = f(t− a) (3.3)
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ce qui revient à faire une translation de la fonction f .

Si on somme plusieurs pics de Dirac en les pondérants (g = αδa + βδb), on voit que l’on va faire la somme
de deux fonctions f pondérées par α et β et décalées respectivement de a et b.

Propriétés
– Commutativité
– Associativité
– Distributivité par rapport à l’addition
– Élément neutre : impulsion de Dirac
– Translation temporelle : Dirac retardé
– Convolution avec un peigne de Dirac :

Rappel, peigne de Dirac :xT =
∑+∞
m=−∞ δ(t−mT ).

Convolution avec un ensemble de Dirac retardés :

(f ∗xT )(t) =
+∞∑

m=−∞
f(t) ∗ δ(t−mT )⇒ (f ∗xT )(t) =

+∞∑
m=−∞

f(t−mT ) (3.4)

Fonction périodique formée par la recopie de f autour de chaque pic de Dirac.
– Lien avec la TF. Sans démonstration,

F(f ∗ g) = F(f) · F(g) (3.5)

et inversement :
F(f · g) = F(f) ∗ F(g) (3.6)

T.F. du signal échantillonné

Signal x(t). Après échantillonnage idéal à la période Te, on calcule la T.F. :

F [xe(t)] = F [(x ·xTe
)(t)]

D’après le lien convolution-TF vu plus haut,

F [xe(t)] = F [x(t)] ∗ F [xTe(t)]

D’après la théorie des distributions (à voir), la T.F. d’un peigne de Dirac est F [xTe(t)] = Fe
∑+∞
k=−∞ δ(f−kFe)

avec Fe = 1/Te. Donc

F [xe(t)] = X(f) ∗ Fe
+∞∑

k=−∞

δ(f − kFe)

On en déduit que, comme le produit de convolution est distributif et qu’on a la propriété (f ∗ δ)(t − t0) =
f(t− t0) le spectre de xe s’écrit :

Xe(f) = Fe

+∞∑
k=−∞

X(f − kFe)

où Fe = 1/Te est la fréquence d’échantillonnage

Le spectre Xe(f) d’un signal échantillonné à la fréquence Fe est celui du signal non échantillonné
répété avec une période fréquentielle Fe.
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4.2 Exemple de spectre, notion de repliement

On considère un signal réel x(t) dont le spectre et borné en fréquence :

c’est à dire |f | > Fmax ⇒ X(f) = 0.

Si on échantillonne le signal, on obtient le spectre :

Xe(f) = Fe

+∞∑
k=−∞

X(f − kFe)

deux cas :

– Fe ≥ 2Fmax
pas de recouvrement des motifs élémentaires Le motif central, correspondant à k = 0 est exactement

égal au spectre de x(t). On peut donc extraire X(f) et reconstituer le signal x(t). Il n’y a pas de perte
d’information lors de l’échantillonnage.

– Fe < 2Fmax
Il y a recouvrement des motifs élémentaires de Xe(f) (voir figure 3.1) On parle de repliement de spectres.
A cause des chevauchements, on ne peut plus récupérer le spectre X(f) du signal initial. On ne peut donc
pas reconstruire x(t) à partir de xe(t). Il y a perte d’information lors de l’échantillonnage.

4.3 Théorème de Shannon

D’après la section précédente
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Fig. 3.1:

Les conditions nécessaires et suffisantes pour que l’échantillonnage d’un signal ne produise pas de
perte d’information sont que le signal ait un support en fréquence borné (qu’il ait une fréquence
maximale Fmax) et que la fréquence d’échantillonnage Fe soit supérieure au double de Fmax.

Fe

2
est appelée fréquence de Nyquist. Elle correspond à la fréquence maximale que peut avoir un signal

pour éviter les distortions lors de l’échantillonnage.

4.4 Signaux à support en fréquence non borné

Distortion du signal dûe au repliement → filtrage anti-repliement = filtre avant l’échantillonnage avec une
fréquence de coupure Far < Fe/2

5 Reconstruction d’un signal

6 Quantification
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Systèmes linéaires continus

1 Définition et classification

1.1 Exemples

Commençons par quelques exemples de ce que nous appelons ”système” :
– Système électrique : ue(t)→ système RLC → us(t)
– Système biologique : pression de contact → sens du toucher → impulsion nerveuse
– Système économique :

1.2 Définition

Système = ensemble d’éléments fonctionnels interagissant entre eux et établissant une relation entre des
signaux d’entrée et des signaux de sortie

– Signaux d’entrée (excitations) : x
– Signaux de sortie (réponses) : y
– si le système est noté S, reliant x et y, on note

y = S[x] (4.1)

1.3 Classification et caractéristiques

On classifie les systèmes en fonction de leurs caractéristiques :

– Statique : La réponse à une excitation est instantanée. Ex : is(t) =
1
R
ue(t)

– Dynamique : Réponse fonction de l’excitation au temps t et aux temps précédents.
Exemple, système RC : Equation reliant entrée ue(t) et sortie us(t) ?

RC
dus(t)
dt

+ us(t) = ue(t) (4.2)

– Monovariable : une seule variable d’entrée et une de sortie

31
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– Multivariable : plusieurs variables en entrée et/ou en sortie

– Linéarité : x = αx1 + βx2 ⇒ y = αS[x1] + βS[x2]

– Causalité : Réponse du système ne peut pas se produire avant l’excitation qui l’engendre.
Alors, si x(t) = 0 pour t < 0 ⇒ y(t) = 0 pour t < 0.

– Invariance par translation dans le temps : si y(t) = S[x(t)], alors y(t−t0) = S[x(t−t0)]. Le système
est dit invariant.

– Stabilité : Système stable = excitation bornée ⇒ réponse bornée.
∃Me, ∀t, x(t) < Me ⇒ ∃Ms, ∀t, y(t) < Ms

Si le système est perturbé, il revient à son état initial lorsque cesse la perturbation.

Exemples

Exemple : tachymètre = linéaire, causal, invariant

Non linéaire : hauteur d’une vague en fonction du vent

Non causal : De Lorean dans ”Retour vers le futur”

Non invariant : parcmètre (tarif dépend du temps)

1.4 Système LTI

Dans la suite, étude des systèmes monovariables continus linéaires à temps invariant = systèmes LTI.

2 Réponse temporelle d’un système LTI

2.1 Relation entrée/sortie

La relation entre l’entrée et la sortie d’un système LTI la plus couramment utilisée est une équation
différentielle linéaire à coefficients constants :

bny
(n)(t) + · · ·+ b1y

(1)(t) + b0y(t) = amx
(n)(t) + · · ·+ a1x

(1)(t) + a0x(t) (4.3)

avec f (n)(t) = dnf(t)
dtn

Pour caractériser complètement le système, il suffit de connâıtre les coefficients. Et si on connait x(t), on
peut calculer la sortie y(t).

Exemple : circuit RLC
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2.2 Réponse impulsionnelle

Autre manière de caractériser un système. La réponse impulsionnelle d’un système est sa réponse à une
entrée qui est une impulsion de Dirac. Notée communément h(t) :

h(t) = S[δ(t)] (4.4)

Nous allons voir qu’on caractérise ainsi complètement le système car on peut retrouver la réponse y(t) pour
n’importe quel signal d’entrée x(t).

On cherche donc la réponse du système à une excitation quelconque x(t). Nous avons vu que l’impulsion de
Dirac était l’élément neutre de l’opération de convolution : x(t) = x(t) ∗ δ(t). Alors

x(t) =
∫ +∞

−∞
x(τ)δ(t− τ)dτ (4.5)

Si on applique x(t) comme excitation, on a en sortie :

y(t) = S
[∫ +∞

−∞
x(τ)δ(t− τ)dτ

]
(4.6)

notre système est linéaire donc

y(t) =
∫ +∞

−∞
x(τ)S [δ(t− τ)] dτ (4.7)

et le système a une invariance temporelle donc, par définition de la réponse impulsionnelle

S [δ(t− τ)] = h(t− τ) (4.8)

On en déduit

y(t) =
∫ +∞

−∞
x(τ)h(t− τ)dτ (4.9)

C’est à dire

La réponse y(t) d’un système à une excitation x(t) est le produit de convolution de l’excitation et
de la réponse impulsionnelle h(t) du système :

y(t) = x(t) ∗ h(t) (4.10)

La réponse impulsionnelle caractérise donc complètement le système puisque ce qui précède est vrai pour
toute excitation en entrée.

Stabilité : on dit qu’un système est stable si sa sortie est bornée lorsque son entrée est bornée. On montre
qu’un système est stable ssi sa réponse impulsionnelle est absolument intégrable (

∫ +∞
−∞ |h(τ)| dτ < ∞)
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3 Réponse fréquentielle d’un système LTI

3.1 Réponse à un signal monochromatique (sinusöıdal)

Considérons un système de réponse impulsionnelle h auquel on envoie un signal d’entrée x(t) = A exp(j2πft),
qui est un signal monochromatique (une seule fréquence). Le signal en sortie peut, d’après le paragraphe 2.2
s’écrire

y(t) = h(t) ∗ x(t) =
∫ +∞

−∞
h(τ)x(t− τ)dτ (4.11)

=
∫ +∞

−∞
h(τ)Aej2πf(t−τ)dτ (4.12)

= Aej2πft
∫ +∞

−∞
h(τ)e−j2πfτdτ (4.13)

(4.14)

où on a sorti de l’intégrale ce qui ne dépendait pas de τ . On reconnait l’intégrale de la dernière ligne, il s’agit
de la TF de la réponse impulsionnelle, que nous notons H(f) :

H(f) =
∫ +∞

−∞
h(τ)e−j2πfτdτ (4.15)

La réponse d’un système LTI à un signal monochromatique complexe (sinusöıdal) est ce même signal
multiplié par le gain complexe H(f), transformée de Fourier de la réponse impulsionnelle

S
[
Aej2πft

]
= h(t) ∗Aej2πft = H(f) ·Aej2πft (4.16)

3.2 Réponse fréquentielle d’un système LTI

Un signal d’entrée quelconque peut, à l’aide d’une TF inverse, s’exprimer sous la forme d’une somme de
signaux monochromatiques :

x(t) =
∫ +∞

−∞
X(f)ej2πftdf (4.17)

On peut alors calculer le signal de sortie du système en utilisant la linéarité de l’intégrale :

y(t) = S [x(t)] =
∫ +∞

−∞
S
[
X(f)ej2πft

]
df (4.18)

Le résultat du paragraphe précédent, qui peut s’écrire :

S
[
X(f)ej2πft

]
= H(f) ·X(f) · ej2πft (4.19)

permet d’obtenir :
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y(t) =
∫ +∞

−∞
H(f)X(f)ej2πftdf (4.20)

Ce qui peut être interprété comme la TF inverse de la sortie y(t) si on note Y (f) sa TF :

Y (f) = X(f) ·H(f) (4.21)

Donc

Si y(t) = h(t) ∗ x(t) est le signal de sortie d’un système LTI ayant comme entrée x(t) et comme
réponse impulsionnelle h(t), alors la TF de y(t), notée Y (f), s’écrit :

Y (f) = X(f) ·H(f) (4.22)

H(f) est appelée fonction de transfert du système

H(f) fait donc office de représentation fréquentielle du système. Elle mesure la réponse du système à une
composante fréquentielle donnée du signal d’entrée. H(f) est un nombre complexe avec un module |H(f)| et
un argument φ(f)

4 Transformée de Laplace

4.1 Définition

La TF d’un signal n’existe que si l’intégrale X(f) =
∫ +∞
−∞ x(t)e−j2πftdt converge. Ceci n’est pas toujours

vrai. On améliore les choses en exigeant que le signal soit nul pour t < 0. Toutes les intégrales iront alors de 0
à +∞.

Mais ce nest pas suffisant. Si on multiplie x(t) par une exponentielle décroissante de paramètre σ > 0 telle
que ∫ +∞

0

∣∣x(t)e−σt
∣∣ dt < ∞

et si on prend la TF de ce nouveau signal :

X(f, σ) =
∫ +∞

0

x(t)e−σte−j2πftdt

=
∫ +∞

0

x(t)e−(σ+j2πf)tdt

Posons p = σ + j2πf , on a :

X(p) =
∫ +∞

0

x(t)e−ptdt

Ceci définit la transformée de Laplace du signal x(t). C’est une généralition de la TF, dans laquelle on
décompose le signal x(t) sur une base de fonctions exponentielles e−pt avec p complexe. On la note parfois L(x)

4.2 Convergence

X(p) n’est défini que si l’intégrale converge. On appelle région de convergence (notée RC dans la suite),
l’ensemble des nombres complexes p qui font converger l’intégrale.
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Exemple : calcul de la T.L. de x(t) = eatγ(t)

4.3 Propriétés de la transformée de Laplace

Certaines identiques à celles de la TF :
– Linéarité : a.x(t) + b.y(t) TL−−→ a.X(p) + b.Y (p)
– Décalage temporel : x(t− t0) TL−−→ exp(−pt0)X(p)
– Décalage fréquentiel : exp(at)x(t) TL−−→ X(p− a)
– Dérivation : L

(
dx(t)
dt

)
? ? ?

on peut intégrer par parties :

L
(
dx(t)
dt

)
=

∫ +∞

0

dx(t)
dt

e−ptdt (4.23)

=
[
e−ptx(t)

]∞
0

+ p

∫ ∞
0

e−ptx(t) dt (4.24)

= pL{x(t)} − x(0+) (4.25)
= pX(p)− x(0+) (4.26)

(4.27)

et de proche en proche, on peut montrer que la dérivée d’ordre (k) se transforme en :

L
(
x(k)(t)

)
= pkX(p)− pk−1x(0+)− pk−2x(1)(0+)− ...− x(k−1)(0+) (4.28)

où les x(0+), x(1)(0+), ..., x(k−1)(0+) sont les conditions initiales, souvent nulles.
Conclusion : on transforme une dérivation dans le domaine temporel en multiplication dans le domaine
”fréquentiel”.

– Intégration : de façon symétrique à la dérivation :∫ t

0

x(τ)dτ =
1
p
X(p) (4.29)

– Convolution : x(t) ∗ h(t) TL−−→ X(p) ·H(p)
Les transformées de Laplace ne sont pas toujours faciles à calculer, on utilise beaucoup les tables ! ! !

...... quelques exemples de TL .......

5 Utilité des TL pour les systèmes LTI

5.1 TL appliquée à l’équa. diff d’un système LTI

Un système répond à une entrée quelconque x(t) par une sortie y(t) = x(t) ∗ h(t). La TL de la réponse est
alors

Y (p) = X(p)H(p) ⇒ H(p) =
Y (p)
X(p)

(4.30)

on appelle H(p) la fonction de transfert complexe ou transmittance complexe du système.

Si p = j2πf appartient à la région de convergence de la représentation de Laplace, on peut relier H(p) à la
fonction de transfert H(f) :

H(f) = H(p)|p=j2πf (4.31)
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Les systèmes LTI sont régis par une équation différentielle linéaire à coefficients constants :

bny
(n)(t) + ...+ b1y

(1)(t) + b0y(t) = amx
(m)(t) + ...+ a1x

(1)(t) + a0x(t) (4.32)

avec m 6 n

Si on suppose les conditions initiales nulles, c’est à dire x(i)(0) = 0 ∀i et y(i)(0) = 0 ∀i, en appliquant
la TL à cette équation différentielle, on obtient :

bnp
nY (p) + ...+ b1pY (p) + b0Y (p) = amp

mX(p) + ...+ a1pX(p) + a0X(p) (4.33)

En mettant en facteur Y (p) dans un membre et X(p) dans l’autre, on obtient :

(bnpn + ...+ b1p+ b0)Y (p) = (ampm + ...+ a1p+ a0)X(p) (4.34)

et donc on peut écrire la fonction de transfert :

H(p) =
Y (p)
X(p)

=
bmp

m + ...+ b1p+ b0
anpn + ...+ a1p+ a0

(4.35)

La fonction de transfert s’écrit sous la forme d’une fraction rationnelle de deux polynômes en p, N(p) =
amp

m + ...+ a1p+ a0 et D(p) = bnp
n + ...+ b1p+ b0 de degrés respectifs m et n.

H(p) =
N(p)
D(p)

(4.36)

5.2 Pôles, zéros et stabilité du système

– Les pôles du système sont les racines λi complexes du polynôme D(p). Ils sont soit réels, soit constitués
d’une paire de complexes conjugués.

– Les zéros du système sont les racines zi complexes du polynôme N(p).

On montre qu’un système est stable si et seulement si tous les pôles de H(p) ont une partie réelle
strictement négative

Rapel : décomposition en éléments simples

Décomposition en éléments simples :

soit une fraction

F (p) =
pm + am−1p

m−1 + ...+ a2p
2 + a1p+ a0

pn + bn−1pn−1 + ...+ b2p2 + b1p+ b0
(4.37)

elle peut se décomposer pour se mettre sous la forme

F (p) = T (p) +
A1

p− p1
+

A2

p− p2
+

An
p− pn

(4.38)

où les pn sont les pôles du système, c’est à dire les zéros du dénominateur. T (p) est la partie entière de F (p).

Utilité : il est beaucoup plus facile de faire la transformée de Laplace inverse sous cette forme !

Pour effectuer la décomposition, on a grossièrement trois étapes
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1. La partie entière n’est présente que si m > n. Dans ce cas, on réalise le quotient des polynômes. Nous
nous contenterons du cas où la partie entière est une constante.

2. Calculer les pôles du système. Si n ≤ 2, c’est simple. Sinon, on essaye les valeurs simples entières, du genre
-2,-1,0,1,2,3,...

3. Calculer les coefficients Ai. Pour ce faire, on multiplie successivement par les (p− pi) et on prend p = pi.

Ensuite, la TL−1 étant une opération linéaire, il suffit de connâıtre la TL inverse de 1/(p− pi) !

...... Exemples ......

5.3 Caractérisation d’un système LTI

– équation différentielle reliant x(t) et y(t)
– réponse impulsionnelle h(t)
– fonction de transfert H(f)
– transmittance complexe H(p)



5
Filtrage analogique

1 Introduction

1.1 Définition d’un ”filtrage”

Un signal peut contenir
– des composantes ou informations non pertinentes
– du bruit
– des valeurs aberrantes
– plusieurs composantes que l’on voudrait séparer
Filtrer = ne laisser passer que ce qui a un intérêt, est pertinent

ceci implique de changer ou d’annuler certaines composantes d’un signal

Finalement, tous les systèmes que nous étudions sont des filtres

Il y a des filtres partout : equaliseur dans des appareils audio, suspensions dans les voitures, téléphonie
mobile, réglages graves/aigus sur un autoradio ...

..... Exemples .....

1.2 Filtrage temporel et fréquentiel

2 Caractérisation dans le domaine fréquentiel (filtres élémetaires)

2.1 Filtre passe bas

On veut sélectionner les basses fréquences. Donc on veut rejeter les fréquences supérieures à une fréquence
de coupure fc. On dit que la bande passante est [0; fc]. Ceci donne une fonction de transfert dont le module
ressemble à :

.... Figure ....

bande passante d’un filtre : intervalle de fréquence dans lequel le gain du filtre G(f) est supérieur à un gain
de référence. Par exemple, en décibels -3 dB. Nous y reviendrons...

39
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2.2 Autres filtres

– Filtre passe-haut :
Sélection des fréquences > fc, réjection des fréq < fc.
Bande passante : [fc; +∞]

– Filtre passe-bande :
Sélection des fréquences appartenant à un intervalle [fc1 ; fc2 ], réjection des fréq en dehors de cet intervalle.
Bande passante : [fc1 ; fc2 ]

– Filtre coupe-bande :
Sélection des fréquences en dehors d’un intervalle [fc1 ; fc2 ], réjection des fréq appartenant à cet intervalle.
Bande passante : [0; fc1 ] [fc2 ; +∞]

2.3 Filtre physiquement réalisable

Filtre physiquement réalisable = stable (il revient à son état initial après excitation) et causal (la sortie ne
se produit pas avant l’entrée)

Considérons un filtre passe-bas idéal, dont la fonction de transfert se résume à une fonction porte :

H(f) = γfc
(5.1)

la réponse impulsionnelle de ce filtre est la transformée de Fourier inverse de la fonction de transfert, et nous
avons vu qu’il s’agissait de

h(t) = fcsinc(2πfct) (5.2)

La réponse impulsionnelle, c’est la réponse du système à un pic de Dirac en t = 0. Celle que nous venons de
calculer commence en −∞ ! Autrement dit, la réponse commence avant l’excitation. Le système est non causal.

Ce filtre n’est donc pas physiquement réalisable. Ceci vient du fait que la fonction de transfert contient des
discontinuités ou des dérivées infinies (en fréquence). On doit donc trouver une approximation du filtre idéal.

3 Filtres classiques

3.1 Exemple simple

Filtre LC :

Calcul de la réponse du filtre

Réponse réelle

3.2 Filtre de Butterworth

La fonction de transfert réelle d’un filtre de Butterworth est de la forme

|H(ω)| =

√
1

1 + (2πΩ)2n
(5.3)
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(Ingénieur britannique Stephen Butterworth en 1930 ! !)

C’est une façon d’exprimer tous les types de filtres, il faut juste remplacer Ω pour obtenir un filtre passe-haut,

passe-bande ou autre. Dans le cas du filtre passe-bas, on a Ω =
ω

ωc
où ωc est la fréquence (plutôt pulsation) de

coupure.

n est l’ordre du filtre.

Caractéristiques :
– Réponse la plus plate possible dans la bande passante
– Pour un ordre n donné, l’atténuation asymptotique est de −20n dB/décade (à partir de ωn = 1

Fig. 5.1: Norme de la réponse d’un filtre de Butterworth en dB. Les différentes courbes correspondent à différents ordres

La représentation complexe d’un filtre de Butterworth passe par l’expression de sa fonction de transfert
complexe ou bien de sa transmittance complexe. Après calcul, on trouve que, suivant l’ordre, la transmittance
complexe (fonction de transfert au sens de Laplace) s’écrit pour les premiers ordres et pour une pulsation de
coupure ωc = 1 :

Ordre Transmittance complexe

1 H(p) =
1

1 + p

2 H(p) =
1

p2 + 1.4142p+ 1

3 H(p) =
1

(p+ 1)(p2 + p+ 1)

4 H(p) =
1

(p2 + 0.7654p+ 1)(p2 + 1.8478p+ 1)

5 H(p) =
1

(p+ 1)(p2 + 0.6180p+ 1)(p2 + 1.6180p+ 1)

6 H(p) =
1

(p2 + 0.5176p+ 1)(p2 + 1.4142p+ 1)(p2 + 1.9319p+ 1)

7 H(p) =
1

(p2 + 0.3902p+ 1)(p2 + 1.1111p+ 1)(p2 + 1.6629p+ 1)(p2 + 1.9616p+ 1)

Il faut remplacer p par jΩ pour obtenir la fonction de transfert complexe.
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Réalisation

3.3 Adaptation au type de filtre

Le filtre que nous avons décrit précédemment est un filtre générique, c’est à dire qu’il faut remplacer Ω
par une quantité dépendant de la pulsation ω et de la pulsation de coupure ωc. Le tableau ci-dessous donne le
changement de variable à faire en fonction du type de filtre :

Filtre Pulsations associées Changement de variable

passe-bas coupure ωc Ω →
ω

ωc

passe-haut coupure ωc Ω →
ωc

ω

passe-bande ω0 =
√
ω1ω2 et B = ω2 − ω1 Ω →

ω0

B
·

(
ω

ω0

)2

+ 1

ω

ω0

coupe-bande ω0 =
√
ω1ω2 et B = ω2 − ω1 Ω →

ω0

B
·

ω

ω0(
ω

ω0

)2

+ 1

3.4 Caractérisation des filtres

Un filtre idéal est un filtre qui coupe parfaitement toutes les fréquences au delà (ou en deça, ça dépend du
type de filtre) d’une fréquence de coupure. Malheureusement, ceci n’est pas possible. En effet, ceci correspond
à une pente infiniment raide de la fonction de transfert à la fréqueune de coupure. Ou, si l’on veut, à une
discontinuité, ce qui veut dire des dérivées infinies, dans le domaine fréquentiel. Donc la réponse impulsionnelle
(TF inverse de la fonction de transfert) aurait des valeurs s’étendant de −∞ à +∞, et donc des valeurs non
nulles à des temps négatifs. Ce qui veut dire que la réponse du système serait non causale puisqu’il y aurait un
signal en sortie avant que la cause ne se soit manifestée. Rappel : la réponse impulsionnelle est la réponse du
système à une impulsion de Dirac au temps t = 0.

Un filtre idéal étant non causal, il n’est pas physiquement réalisable. On doit donc toujours faire une ap-
proximation du filtre idéal. Lorsqu’on réalise un filtre réel, on le caractérise par un gabarit qui spécifie

– la zone dans laquelle doit passer sa courbe en fréquence,
– la bande passante et la bande atténuée ou rejetée,
– les ondulations maximales admissibles dans la bande passante (paramètre a sur la figure 5.2) et l’atténuation

minimale dans la bande atténuée (paramètre b sur la figure 5.2).
Un filtre réel est toujours un compromis entre atténuation et oscillations.

3.5 Autres filtres

Nous ne cherchons pas à être exhaustifs, mais pour montrer diverses caractéristiques de filtres, il faut citer
ceux qui sont les plus classique.
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Fig. 5.2: Gabarit utilisé pour la caractérisation des filtres

Filtre de Tchebychev

Il y a deux types de filtres de Tchebychev, qui présentent des oscillations soit dans la bande passante (filtres
de Tchebychev de type I), soit dans la bande atténuée (filtres de Tchebychev de type II). Nous ne parlerons que
des premiers (type I), ceux de type II étant peu utilisés.

La norme de la fonction de transfert est donnée, pour un filtre de Tchebychev de type I, par

|Hn(jω)| = 1
1 + ε2T 2

n (Ω)
(5.4)

où les Tn(x) sont les polynômes de Tchebychev :

Tn(x) =
{
cos(n · arccos(x)) si |x| < 1
ch(n · argch(x)) si |x| > 1 (5.5)

Les filtres de Tchebychev sont caractérisés par une oscillation dans la bande passante, réglée par le paramètre
ε, pas d’oscillation en bande atténuée, une raideur de coupure importante. Un exemple de filtre passe-bas est
illustré sur la figure 5.3.

Fig. 5.3: Exemple de filtre de Tchebychev passe-bas
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Filtres elliptiques ou de Cauer

Comparaison des filtres

Illustration sur la figure 5.4 du module de la fonction de transfert pour différents filtres. On observera
la différence en termes de raideur, d’atténuation et d’oscillations. En pratique, on choisit le filtre adapté au
problème que l’on veut traiter.

Fig. 5.4: Comparaison de différents filtres : Butterworth, Tchebychev de type I et II, elliptique
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