Notes de cours de PHYS 708
Méthodes et outils numériques
de traitement du signal

Damir Buskulic, 10 décembre 2010






Table des matieres

1 Introduction
1 Definitions et notions de base
1.1 Signal et bruit . . . . . . ..
1.2 Traitement du signal . . . . . . . . . L
1.3 Notions de base . . . . . . . .« . L e
2 Classification des signaux
3 Quelques signaux utiles
4 Corrélations
4.1 Intercorrélation . . . . . . . . .. e e e e e e e e
4.2 Cas particulier : autocorrélation . . . . . . . . ...
5 Introduction aux distributions
5.1 Probleme 7théorique” . . . . . . . L e
5.2 Distribution de Dirac . . . . . . . . . e
5.3 Peigne de Dirac . . . . . . . . oL L
2 Représentation fréquentielle des signaux
1 Introduction
1.1 Domaine temporel, domaine fréquentiel (ou spectral) . . . . . . .. ... ...
1.2 Représentation fréquentielle . . . . . . . . . ..o L
2 Décomposition en série de Fourier
2.1 Définition . . . . . . . L e e e e
2.2 Justifications . . . . ...

10

11

11
11
12
13

13
14
15

17

17

17
18



2.3 Exemple . . . . . ... ... ..

Transformée de Fourier

Quelques propriétés des transformées de Fourier

Transformée de Fourier et énergie des signaux

Exemples

TF au sens des distributions

Passage du signal continu au signal numérique

Avantages et inconvénients de la numérisation

Chaine de numérisation

Echantillonnage

Conséquences dans le domaine fréquentiel

4.1 Spectre du signal apres échantillonnage idéal . . . . . . .. ... ... ... ... .....
4.2 Exemple de spectre, notion de repliement . . . . . . . ... ... oL
4.3 Théoreme de Shannon . . . . . . . . . . . . e e e e e
4.4 Signaux a support en fréquence non borné . . . . . .. ... L.

Reconstruction d’un signal

Quantification

Systémes linéaires continus

Définition et classification

1.1 Exemples . . .. ... ... ... ...
1.2 Définition . . . . ... ..o
1.3 Classification et caractéristiques . . . .
14 Systeme LTI . . ... ... .......

Réponse temporelle d'un systeme LTI

2.1 Relation entrée/sortie . . . . . ... ..
2.2 Réponse impulsionnelle . . . . . .. ..

Réponse fréquentielle d’'un systeme LTI

3.1 Réponse a un signal monochromatique (sinusoidal) . . . . . ... .. ... ... L.

3.2 Réponse fréquentielle d’un systeme LTI

21

22

23

24

24

25

25

25

26

27

27
29
29
30

30

30

31

31

31
31
31
32

32

32
33



4 Transformée de Laplace

4.1
4.2
4.3

Définition . . . . . . . e
CONVErgENCE . . v v v v e it e e e e e e e e e e
Propriétés de la transformée de Laplace . . . . . . . . . . .. . ... ... ... ...,

5 Utilité des TL pour les systemes LTI

5.1
5.2
5.3

TL appliquée a I’équa. diff d'un systeme LTT . . . . . . . . ... ... ... ... .. ...
Poles, zéros et stabilité du systeme . . . . . . . . .
Caractérisation d'un systeme LTT . . . . . . . ... o oL

Filtrage analogique

1 Introduction

1.1
1.2

Définition d’un "filtrage” . . . . . . . Lo e
Filtrage temporel et fréquentiel . . . . . . . . . ..o o oL

2 Caractérisation dans le domaine fréquentiel (filtres élémetaires)

2.1
2.2
2.3

Filtre passe bas . . . . . . . . L e e
Autres filtres . . . . . L.
Filtre physiquement réalisable . . . . . . . . . . . . ...

3 Filtres classiques

3.1
3.2
3.3
3.4
3.5

Exemple simple . . . . . . oL e
Filtre de Butterworth . . . . . . . . . . . e e e e e e
Adaptation au type de filtre . . . . . . . .
Caractérisation des filtres . . . . . . . . . .. e
Autres filtres . . . . . L L

35

35
35
36
36

36
37
38

39

39
39
39
39

39
40
40






Introduction

1 Definitions et notions de base

1.1 Signal et bruit

Un signal est la représentation d’une information (souvent dépendant d’un parametre, par exemple le temps,
mais pas forcément). Cette représentation a un support physique. Ce support sert a transmettre l'information.

Exemples

Signal électrique (support) sortant d’un microphone et représentant une information (parole, musique,...)
— Images (penser & lastronomie) — signal 2D

— Vidéos

— Débit d’un fleuve en fonction du temps

- EEG, ECG (biologie)

Bruit = phénomene perturbant la perception ou l'interprétation d’un signal

1.2 Traitement du signal

Techniques pour créer, transformer et analyser les signaux en vue de leur exploitation. On se bat contre
le bruit, on veut conserver et/ou extraire le maximum d’information utile d’un signal généralement bruité.

Autre systeme
| physique

Systeme T ransmtsszon

physique Traitement

R
T
R
R
B
O

bruit
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Le traitement du signal comprend par exemple : le controle, le filtrage, la compression de données, la
transmission de données, le débruitage, la déconvolution, la prédiction, I’identification, la classification,...

Création de signaux

Synthese : combinaison de signaux élémentaires pour créer des signaux complexes. Par exemple écrire une
lettre. Autre exemple, synthése d’un signal temporel par ajout de signaux purs monochromatiques.

Modulation : on adapte un signal au canal de transmission. Par exemple modulation de fréquence ou mo-
dulation d’amplitude

porteuse
y fin i ‘ I
signal

: rechercher des exemples de modulation

Transformation de signaux

Adaptation du signal aux besoins
— Filtrage : élimnation de certaines portions ou composantes.
— Craquements dans un vieil enregistrement
— Annulation d’écho
— Filtre pour la reconnaissance de forme / détection de contours
— Codage : sécurité, signaux numériques de la TNT,
— Compression : jpeg, mp3, mpegd

Analyse de signaux

Liée a ou utilisée pour l'interprétation des signaux

— Détection : séparation d’un signal du bruit de fond, extraction de composantes utiles
— Identification et classification : reconnaissance de la parole, vision artificielle (identification de produits
défectueux sur une chaine de production)
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F1G. 1.1: Exemple d’évolution temporelle et de spectre d’un son voisé (”i”, image de gauche) et non voisé ("ch”, image

de droite)

1.3 Notions de base

Dans tout ce qui suit, on prendra tres souvent des signaux dépendant du temps mais il est bien entendu que
les notions présentées peuvent étre adaptées aux signaux dépendant d’un parametre quelconque et quelque soit
leur dimension.

Déterministe ou aléatoire ?

Signal peut étre
— déterministe : on peut concevoir un modele qui prévoit le signal au cours du temps.
— stochastique ou aléatoire (c’est la méme chose) : évolution du signal est aléatoire, on ne peut pas la
prédire a priori. Outils statistiques nécessaires.
Un signal aléatoire peut en outre étre stationnaire, c’est a dire que ses propriétés statistiques ne changent
pas au cours du temps.
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F1a. 1.2: Exemple de signal déterministe (image de gauche, en haut), aléatoire (image de gauche, en bas) non stationnaire
(image de droite en haut) stationnaire (image de droite en bas)
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Energie et puissance d’un signal

On utilise souvent la notion d’énergie et de puissance d’un signal. Ces notions viennent par extension d’un
cas pratique. Imaginons une tension variable v aux bornes d’une résistance p = 1 2. La puissance instantannée
sera P = v?/p. Par convention, on a gardé cette notion de “puissance” comme une quantité proportionnelle a
l’amplitude au carré, et celle associée “d’énergie” dans le cas de signaux non électriques.

En traitement du signal, I’énergie et la puissance d’un signal a(t) non périodique sont donc naturellement
données par :
+oo T
E, = / la®)|* dt, P, = lim 7/ la(t)|* dt (1.1)
—o00 -T

Dans le cas d’un signal périodique, on calcule la puissance sur une période.

Cette puissance est bien homogene & [E/t].

Rapport signal sur bruit

Vous verrez plus précisément dans le cours ”Signaux et bruit” cette notion de rapport signal sur bruit.

Tout signal mesuré comporte du bruit, c’est a dire une composante aléatoire. Notion de bruit dépend du
contexte. Par exemple
— pour l'ingénieur télécom,
— Ondes radio d’un satellite = signal
— Ondes radio d’une source astrophysique (pulsar...) = bruit
— pour 'astrophysicien,
— Ondes radio d’un satellite = bruit
— Ondes radio d’une source astrophysique (pulsar...) = signal
Un signal a(t) dépendant du temps contient une composante aléatoire b(t) (bruit) et une composante
déterministe s(t) (signal) :
a(t) = s(t) + b(t) (1.2)

Introduit la notion de rapport signal sur bruit pour quantifier la qualité d’un signal :

Py

_ b 1.
Rg/p 7, (1.3)

P; est la puissance du signal, P, celle du bruit.

2 Classification des signaux

Classification
— dimensionnelle :
— signal 1D monodimensionnel, fonction d’un seul parametre (pas forcément t)
— signal 2D bidimensionnel : image
— signal 3D tridimensionnel : film = ensembles d’images en fonction du temps
— comportementale ou phénoménologique : selon que le signal est déterministe ou non, stationnaire ou
non, etc... voir figure 1.3

’ : faire des recherches sur l’ergodicité

— énergétique :
— signaux a énergie finie (puissance moyenne nulle) = généralement signaux physiques
— infinie (puissance moyenne non nulle) : c’est le cas des signaux périodiques
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Signaux physiques

Déterministes Aléatoires

Permanents Transitoires Stationnaires Non stationnaires
Périodiques  Non périodiques Ergodiques  Non ergodiques

F1G. 1.3: Classification comportementale des signaux

3 Quelques signaux utiles

— échelon = établissement instantané d’un régime continu

/0 pourt<O
V(t)_{l pour ¢ > 0

— porte (ou rectangle) = différence de deux échelons

_J 1 pour|t|<F
() = { 0 ailleurs

avec 7T la largeur de la porte.
— exponentielle décroissante : y(t) = y(t).e”
signaux périodiques simples : sinus...

at avec a > 0

4 Corrélations

4.1 Intercorrélation

Définition

On veut comparer un signal z(t) & un signal y(t), éventuellement en les décalant 1'un par rapport a Iautre.
L’intercorrélation mesure la similitude entre ces deux signaux. Pour des signaux réels (pas complexes), la

fonction d’intercorrélation s’écrit :
— pour les signaux a énergie finie

Interprétation

On veut comparer la forme de deux signaux. On va supposer qu’ils ont la méme énergie totale, et qu’on
peut la calculer, évidemment, c’est a dire qu’elle n’est pas infinie.
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Commengons par un signal simple, un signal porte. Les deux parametres que l'on peut faire varier sont
la largeur de la porte (T') et la hauteur (A). L’énergie (voir sa définition ci-dessus) pour un signal porte est

simplement (faire le détail du calcul...)
Er = A%T (1.6)

La figure 1.4 montre deux signaux porte ayant la méme énergie mais avec des valeurs de T' différentes.

A,

F1G. 1.4: Exemple de signaux ”porte”. Si les deux signaux ont la méme énergie, leur intercorrélation est maximale lorsqu’ils sont
identiques

La valeur de l'intercorrélation entre ces deux signaux si on suppose un décalage 7 =0 et Th < T} est :

Oa:y = Al.Ag.TQ (17)

Or comme les deux signaux ont la méme énergie, on a A3.7) = A3. T, = Ay =A; % donc 'intercorrélation

Cry = Ay /T1.Ty (1.8)

Puisque Ty < T7i, ce produit sera maximal pour 7o = T, c’est a dire lorsque les deux signaux seront
identiques. Un raisonnement similaire peut étre fait lorsque 75 > 77, et on obtient le méme résultat. On voit
bien intuitivement que si I'on a deux fonctions bornées en temps (pas forcément des fonctions porte), on peut
les découper en petits éléments dt et faire le méme raisonnement que ci-dessus. L’intercorrélation sera maximale
pour deux fonctions ayant exactement la méme forme.

s’écrit

Imaginons que nous ayons une forme d’onde donnée (figure 1.5) et que nous cherchions & savoir si elle se
cache dans un signal bruité. Il suffit de décaler cette fonction d’une valeur 7 et de calculer I'intercorrélation avec
le signal.

La valeur C,.(7) sera maximale lorsque le décalage correspondra & la position exacte ol les deux signaux
se ressemblent le plus.

4.2 Cas particulier : autocorrélation

L’autocorrélation est une intercorrélation du signal avec une version décalée de lui-méme :
— pour les signaux a énergie finie

“+oo
oxx(f)zﬁ o(t).a(t — 7)dt (1.9)

— pour les signaux a énergie infinie :
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s(t+10) J/\]W

s(t)

s(t —27p)

s(t —3719)

corr(T)

F1G. 1.5: On calcule la valeur absolue de l'intercorrélation |a x s(7)| (graphe du bas) entre deux signaux a(t) et s(t) en fonction
d’un décalage T de s(t). La valeur maximale est obtenue lorsque s(t) ”ressemble” le plus & a(t). Ici, on a construit a(t)
comme la somme de s(t) commengant & un temps 79 et d’un signal aléatoire gaussien.

elle indique pour quelles valeurs du décalage 7 le signal ”se ressemble”. Ceci sert a détecter des régularités
du signal pas forcément visibles a 1’oeil. Propriétés :

— |Cys(7)| € Cpz(0). Valeur max pour décalage nul

— z(t) périodique =  C,,(t) périodique, méme période

— Cys(t) paire pour des signaux réels.

5 Introduction aux distributions

5.1 Probleme "théorique”

Petit probleme ”théorique” : soit le schéma électrique de la figure 1.6 qui permet de charger ou décharger
un condensateur ”instantanément” si ’on suppose que tous les composants et éléments sont idéaux.

E —— v) | __ C

F1G. 1.6: Charge instantanée (en théorie...) d’un condensateur

Si P'on ferme linterrupteur, le condensateur initialement déchargé se charge instantanément. La tension a
ses bornes devient donc égale & E en un temps nul. Elle s’écrit v(t) = (0 sit <0, E si ¢t > 0), c’est une fonction
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discontinue.

Question : & quoi est égal le courant i(t) ?

. dv
i(t) :CE (1.11)

donc i(t) = 0 partout sauf en ¢ = 0 puisque v(t) n’est pas continue en ce point. Pourtant, le condensateur
s’est chargé, il y a eu transfert de charge depuis le générateur E. Et I'intégrale de i(t) représente justement cette
charge :

/+°O i(t)dt = Qc = C.E (1.12)

— 00

i(t) ne peut pas étre infinie en ¢ = 0, sinon 'intégrale ne serait pas définie et on pourrait avoir des choses
bizarres comme 2i(t) = i(t)...

5.2 Distribution de Dirac

La fonction i(t) n’en est pas une, c’est une extension du concept de fonction que 'on nomme une distribution.
Son petit nom est distribution de Dirac. On peut la voir comme la limite d’'une fonction porte lorsque 1’on fait
tendre T vers 0 tout en gardant l’aire constante. On peut aussi remplacer ”porte” par ”gaussienne” et faire la
méme chose. La forme de la fonction de départ n’est pas critique.

Définition
Si f est une fonction, la distribution de Dirac ¢ (appelée aussi impulsion de Dirac) est définie par la
propriété suivante :

+oo
/ F(0).5(8)dt = £(0) (1.13)

—00

6(f) = f(0) (1.14)

Aucune ”fonction” ne vérifie cette propriété. On représente la distribution de Dirac par une fleche sur I'axe
des ordonnées en t = 0 (figure 1.7).

!

— 5(t)

F1G. 1.7: Une distribution de Dirac est la limite d’une fonction porte dont 'aire reste constante mais la hauteur tend vers I'infini

Propriétés

— Dirac = signal de durée nulle et d’énergie finie, égale a 1



5 — Introduction aux distributions 15

— On note (abus de notation) d;, = §(¢ — t1), impulsion de Dirac & 'instant ¢;. Appliquée & une fonction ¢,
on a

o1, (p) = o(t1) (1.15)

= 0(fi+ f2) = 6(f1) +0(f2)
= 0(Af) = A6(f)

— la distribution de Dirac peut étre vue comme la dérivée d’un échelon

5.3 Peigne de Dirac

Somme infinie d’impulsions de Dirac régulierement espacées :

I = Jf 5(t —mT) (1.16)

m=—0o0
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Représentation fréquentielle des signaux

1 Introduction

1.1 Domaine temporel, domaine fréquentiel (ou spectral)

Phénomene P(«) dépendant du parametre o (le temps la plupart du... temps). Si P(«) est périodique,
fréquence f = nombre de fois que le phénomene se reproduit par unité de a.

Exemple avec le temps. Si T est la période, f = 1/7. Unité : le Hertz (= s71).
Pour un son : aigu = hautes fréquences, grave = basses fréquences.

. ajouter figure fréquence .....
La fréquence apporte un certain type d’information.

Exemples :

— Son : voix, musique,...

— Onde lumineuse : correspondance couleurs < longueur d’onde ou fréquence

— Image : surfaces = basses fréquences, contours = hautes fréquences. On parle de fréquences ”spatiales”.

F1G. 2.1: Exemple de filtrage d’une image. On a enlevé les fréquences basses (les aplats) dans I'image de droite

17
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1.2 Représentation fréquentielle

Interprétation de la fréquence d’un signal parfois plus utile que la forme de sa variation au cours du temps
— représentation fréquentielle. Comment représenter 'information de fréquence d’un signal ?

Un signal a-t-il une ”composition” en fréquence ?
— signal sinusoidal z(t) = Xg sin(27 fot) — fréquence = fo... facile!
— et pour les signaux suivants :

~ip—_\

c’est moins facile...
Pourtant, si on ajoute plusieurs signaux monochromatiques (sinusoides simples) de fréquence différentes, on
obtient par exemple :

N\ N
YR VAR VAR

\-

VA

FiG. 2.2:

Des signaux complexes peuvent étre rerésentés par une somme de sinus (ou cosinus d’ailleurs... pourquoi ?)

signal2 -
¥

signal3

2 Décomposition en série de Fourier

Tout signal périodique de période T peut se décomposer en une somme de fonctions sinus et cosinus
de fréquences multiples de fo = 1/T. C’est la décomposition en série de Fourier. fj est la fréquence
fondamentale.

Cette décomposition constitue le lien entre la représentation temporelle d’un signal et sa représentation
fréquentielle.
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2.1 Définition
Forme trigonométrique

Signal z(t) périodique, de période T peut s’écrire

204 f [ sin <nt) + B, cos <n2;t)] (2.1)

On peut calculer les coefficients de la série :

9 [T/2 9 9 [T/2 9
A, = —/ x(t) sin <n7rt) dt B, = —/ z(t) cos (nwt> dt (2.2)
T —-T/2 T T —T/2 T

Forme complexe

Utilise l'expression des sinus et cosinus sous forme d’exponentielles (formule de Moivre exp(j0) = cosf +
j.sin@) :

exp(j0) + exp(—j0) exp(j0) — exp(=0) _ ; exp(=j0) = exp(50)

cosf = 5 sinf = 5 . 5 (2.3)

Desquelles on peut déduire la décomposition de x(t) en somme d’expo. :
x(t) = A? + ;::) { — jBy) exp (jn?t) + (4, + jBn)exp <—jn2;:t)] (2.4)

Si on pose

Co = % (2.5)
C, = @ sin>0 (2.6)
c, = % sin<0 (2.7)
(2.8)

On peut écrire une forme simple de la décomposition :

n=-+oo o
- 3 in=s 2.
Z C,, exp <]n T t) (2.9)

avec une expression des coefficients C,
1 [1/? 2
Cn=— t —jn—t | dt 2.10
7 [ e (in7) (2.10)

On appelle les C), les coefficients de Fourier de z(t). C’est leur ensemble qui forme la représentation
fréquentielle du signal x(t).



20 Chapitre 2 — Représentation fréquentielle des signaux

2.2 Justifications
Pourquoi les nombres complexes ?
Plus faciles & manipuler pour des phénomeénes périodiques. Exemple, lien entre courant et tension dans des

circuits contenant R, L et C :

résistance inductance capacité
en utilsant des réels v = Ri v = L% = C%’

en utilisant des complexeset v =271 v=Ri v=(jLw)i v= 5—5)2

L’utilisation de complexes permet de remplacer des équations différentielles par des expressions et équations
algébriques.

Interprétation vectorielle

On peut se représenter une transformée de Fourier comme la décomposition d’un vecteur sur une base dans
un espace vectoriel. On fait pour commencer une analogie, les vecteurs de I’'espace vectoriel étant des fonctions.
Dans un espace vectoriel habituel, de dimension N, un vecteur ¥ peut s’écrire sur une base de N vecteurs u; :

N
7= e (2.11)
i=1

ou les ¢; sont les coordonnées de ¥ dans la base ;.

On décide de se placer dans ’espace abstrait des ”fonctions périodiques de période T”, tel que toute fonction
est appelée ”vecteur”. L’expression 2.9 ressemble & la décomposition d’un vecteur (x(t)) sur une base dont les
vecteurs de base seraient les fonctions exp (— jn%’rt) et les C), les coordonnées de ce vecteur.

Un "petit détail” est que le nombre de vecteurs de base est ici infini...

Quand on parle de "base” dans un espace vectoriel, on définit souvent un produit scalaire, parce qu’il faut
bien exprimer le fait que deux vecteurs sont orthogonaux. Dans notre cas, le produit scalaire est défini par

1 [T/2
o) =7 [ 509 (212)
—T/2

ou le signe ”*” désigne la conjugaison complexe.

Dans un espace vectoriel habituel, pour calculer la coordonnée ¢; du vecteur ¥ selon la direction du vecteur
de base u;, on réalise le produit scalaire de ¥ et de u; : ¢; = v.u;. Ceci ne marche que si les vecteurs de base
sont, orthogonaux.

On reconnait dans I’expression 2.10 des coefficients C,, un produit scalaire tel que définit ci-dessus. On peut
vérifier que les vecteurs de base sont orthogonaux entre eux en calculant le produit scalaire (exp (—jn2xt) ,exp (—jm2=t)).
Ce produit est nul pour n # m (d’accord, ce n’est pas immédiat... & compléter).

L’analogie que nous venons de développer peut se justifier rigoureusement et prend tout son sens dans le cas
de la transformée de Fourier que nous allons voir plus loin.

2.3 Exemple

Exemple, faisons la décomposition en série de Fourier de la fonction porte périodique Pr(t), d’amplitude A
entre —to/2 et +to/2, 0 ailleurs, répété avec une période T.
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Les coefficients de la décomposition se calculent :

T/2 9
c, = 7/ t) exp <jn7rt) dt (2.13)
T/2 T
to/2 2
= = Aexp (—jnt) dt 2.14
T t0/2 T ( )
A 1 or \ 1772
- 7 {— —5— exp <—jn;t>] (2.15)
Jn= —to/2
A 1 1 . 27T to 1 ) 27T 7t0
- - |-= Pl it 0 2.1
Tn;{ 2jeXp<]nT 2>+2jeXp<‘mT 2)] (2.16)
(2.17)

L’expression entre crochets n’est rien d’autre que sin (’”}t") sous forme d’exponentielles complexes. On a
donc une expression simple des coeflicients de Fourier :

- A . ’n/]'('t()
Cn—sm< T > (2.18)

Petit détail : dans le cas de Cp, on trouve Cy = Aty/T (faites le calcul!).

Et donc la fonction Pr peut se décomposer en série de Fourier :

Pr = ":i':oo A sin nty ex 'n2—7rt (2.19)
TT 2 T )P\ '

A faire en cours : représentation des C,,, spectre de raies...

3 Transformée de Fourier

Pour les signaux périodiques, ¢a fonctionne. Quid des signaux non périodiques ? Un signal non périodique
peut étre vu comme un signal de période infinie. Dans la décomposition en série de Fourier, les fréquences des
fonctions sont des multiples de fo = 1/T (= harmoniques de fy). Si T — o0, fo — 0, 'écart entre les raies du
spectre devient infiniment petit, la représentation fréquentielle devient continue.

On parle alors de transformée de Fourier.
Donner un exemple graphique

Passer du discret au continu, c’est passer de la somme a 'intégrale. Il nous faut déterminer la variable qui
varie dans la somme discrete 2.10 pour en faire notre variable d’intégration. Dans 2.9, la somme est réalisée sur
la variable n. Si par commodité on réécrit la somme en introduisant un facteur An = (n+1)—n =1 (¢a semble
un peu artificiel, mais ¢a permet le passage a U'intégrale) :

n=-4o0o o
= Z Cy, exp (jnTt> An (2.20)

et si on pose w, = 27n/T (on reconnait la pulsation correspondant & ’harmonique n), on peut remplacer An :

n=+4o00
2r \ T
= in—t | —A 2.21
Z C,, exp (]n T t) 5 Aw (2.21)

n=—oo
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ol Aw = wp4+1 — wy, est la différence de pulsation lorsqu’on passe d’une fonction harmonique a la suivante. Le
passage a l'intégrale est alors facile. Si Aw — 0 lorsqu’on augmente la période T' (pour passer du cas périodique
au cas non périodique), on peut remplacer Aw par dw infinitésimal et écrire l'intégrale :

+oo
x(t) = C(w) exp (jwt) %dw (2.22)

—00

Avec T' — oo. Les coefficients de Fourier ne dépendent plus d’une variable discréte n mais d’une variable
continue w. Ils peuvent se calculer :

T/2
Cw) = T /_T/2 x(t) exp (—jwt) dt (2.23)

Toujours avec T' — oo. On voit que I'intégrale x(¢) ne dépend plus de T puisque C(w) ~ 1/T et z(t) ~ T. On
peut donc simplement éliminer ce parametre infini qui ne joue finalement aucun réle. De plus, on a I'habitude
de symétriser le facteur 1/27, voir ci-dessous.

On définit la transformée de Fourier d’un signal z(t) (en utilisant des notations a peine différentes) par
1 o0
X(w)=—= x(t)exp (—j27 ft) dt 2.24
@ == [ _alyesn(=s2nfo (2.21)

et on appelle la ”décomposition de Fourier” la transformée de Fourier inverse :
)= = [ X@ew(i2np) (2.25)
z(t) = — w)ex T .
o ) pPU

Notations

On notera la transformée de Fourier de x(t) et son inverse :

X(f)=F((t) ot a(t)=F"(XWw))

4 Quelques propriétés des transformées de Fourier

— Linéarité : a.z(t) + b.y(t) KEIN a.X(f)+bY(f)

1
— Changement d’échelle : z(a.t) KEIN fX(i)
a

contraction dans le domaine temporel = dilatation dans le domaine fréquentiel et inversement
— Dérivation :
— Intégration :
— Parité : .

x(t) réelle paire — X(f) réelle paire

x(t) réelle impaire RN e (f) imaginaire pur et impaire

TF

- z(=t) — X(=f)
— Signaux réels : Si x(t) est réel, alors X (f) = X(—f). Conséquence sur module et argument ?
— Signaux imaginaires purs : Si x(t) est imaginaire, alors X (f) = =X (—f)
— Décalage temporel : z(t — () IE, exp(—j2m fto) X (f)

— Décalage fréquentiel : exp(j27 fot)z(t) EEIN X(f - fo)
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Dualité de la TF

a voir en TD

5 Transformée de Fourier et énergie des signaux

Théoreme de Parseval, que I’on va donner sans démonstration.

Dans le cas ou les intégrales existent

+oo 9 “+o0 5
/ (1) dt = / X (P df (2.26)

—00 — 00

Ce qui se traduit par : la transformée de Fourier conserve 1’énergie du signal. C’est une transformation
unitaire.

L’une des questions qui se pose naturellement lorsqu’on étudie un signal est : “Quelle ” quantité” de signal est
présente a une fréquence f donnée ?”. La notion de quantité est ici volontairement laissée floue pour le moment.
Pour un signal déterministe (non aléatoire) z(t), la transformée de Fourier §(f) peut suffire & décrire une série
temporelle dans le domaine fréquentiel. Dans le cas d’un signal stochastique (série temporelle aléatoire), une
transformée de Fourier ne donne I'information que pour une réalisation de la série temporelle (un cas particulier).

La TF conservant 1’énergie, on peut définir une notion d’énergie par unité de fréquence. C’est ce que 'on
appelle la densité spectrale d’énergie. On rappelle que 1’énergie totale du signal est définie par

Er = /Ho |z ()| dt (2.27)
et donc (Parseval) :
+oo 5
Br= [ XOPa (225)

on définit naturellement d’apres ce qui précede la densité spectrale d’énergie par
2
E(f) =X/l (2:29)

mais comme on ’a vu, ceci n’a pas réellement d’utilité pour un signal stochastique. On définit la den-
sité spectrale d’énergie dans ce cas comme 'espérance mathématique (correspondant & un nombre infini de
réalisations du signal)

bien entendu, seulement si cette espérance existe.

Pour définir la densité spectrale de puissance, on est tenté de prendre une moyenne temporelle de
I’énergie comme dans I’équation 1.1. Mais, toujours dans le cas stochastique, il faut faire attention au fait que
la fonction a(t) peut ne pas étre de carré sommable et que X (f) peut ne pas étre défini au sens des fonctions.
On arrive a donner une définition cohérente en considérant des fonctions tronquées

zp(t) ={z(t)si [t| <T, 0sinon }
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La définition de la densité spectrale de puissance est alors :

_ EBllar(l’]
Px(f) = lim

_ = 2.

Point intéressant, on montre que pour des processus stochastiques stationnaires, il y a une relation de Fourier
entre la densité spectrale de puissance et la fonction d’autocorrélation. C’est le théoréeme de Wiener-Khinchine :

+oo
Px(f) = Clro(T) e 2T dr

— 00

La plupart des auteurs utilisent d’ailleurs cette relation comme une définition de la densité spectrale de
puissance.

Dans la plupart des cas qui nous occuppent, la fonction z(t) est réelle et dans ce cas, la densité spectrale
P(f) est une fonction réelle, positive et paire. On peut donc utiliser ce que 'on nomme la densité spectrale de
puissance unilatérale

PES(f) = Px(f) + Px(—f) = 2.Px(f) (2.31)

6 Exemples

Exemple 1

— sinus cardinal

Exemple 2

exponentielle multiplié par échelon (voir paragraphe 3 du chapitre précédent) :

x(t) = v(t). exp(—at) avec a > 1

7 TF au sens des distributions



Passage du signal continu au signal numérique

Numérisation = passage d’une information continue z(t) (en temps et en amplitude) & un ensemble d’infor-
mations discrétes z;(tx), aussi bien en temps qu’en amplitude. Un signal numérique est une suite de valeurs,
codées sous forme binaire (suite de 0 et de 1).

1 Avantages et inconvénients de la numérisation

— Numériser = perdre de I'information
— Permet 'utilisation de machines de traitement de I'information (ordinateurs, processeurs,...)
— Flexibilité : on peut facilement modifier un logiciel, moins un montage électronique
— Puissance : les traitements complexes sur ordinateur sont devenus plus efficaces que les traitements
analogiques
— Cotit
— Une fois numérisé, la transmission du signal est trés robuste (0/1 codé en 0/5V, un ajout d’erreur sur la
tension ne change pas la valeur 0 ou 1)

Analogique et numérique ne peuvent pas se comparer en termes de qualité, chacun a ses utilisations.

2 Chaine de numérisation

Signal u(t) \

>

S

Traitement

uantification
0 i Calculateur

Les étapes principales de numérisation d’un signal sont les suivantes :

25
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Echantillonnage

prélevement du signal continu & des temps discrets t,, séparés par un intervalle (généralement fixe) At =
tn+1 — tn appelé période d’échantillonnage.

Résultat : suite de valeurs z(t,,), t, = n.At.

Quantification

Chaque valeur z(t,) est transformée en une valeur approchée z.(t,) = m.q qui est un multiple entier m
d’une quantité élémentaire q. Cette quantité ¢ est appelée échelon de quantification.

Codage

transforme ’entier m en un mot binaire exploité par un calculateur.

3 Echantillonnage

Echantillonnage idéal : prélévement pendant un temps infiniment court des valeurs de x(t) aux temps
t=1t, =n.At

Modélisation mathématique : produit de x(t) avec un peigne de Dirac IIa. ()

:v(t) A

N

X —>

\

Ly

Trgggy A

At 2At 3At 4At SAt

n=-+oo

Te(t) = 2(t) Ta(t) = 2(). S 8t —nAY)

n=—oo

les propriétés du peigne de Dirac donnent :

n=+4oo

ze(t) = Y x(nAt).6(t — nAt)

n=—oo
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4 Conséquences dans le domaine fréquentiel

4.1 Spectre du signal apres échantillonnage idéal
Analogie stroboscopique

Supposons que nous réalisions ’échantillonnage a une fréquence f. d’un signal qui a une fréquence fonda-
mentale fy plus grande que f.. Le fait de prendre des échantillons régulierement espacés reconstruit un signal

Sl

qui a la méme forme que le signal initial, mais de fréquence plus faible. L’effet est le méme que lorsqu’on fait
de la stroboscopie. Dans le spectre, cela revient a déplacer une fréquence.

Justification mathématique, notion de convolution

Nécessité de la notion de convolution.

Convolution Soient deux signaux f(t) et g(t). On appelle produit de convolution l'intégrale suivante :
+oo +oo
(Fe9)0) = [ st =y = [ st - ngryar (31)
— 00 — 00
Remarque : ¢a ressemble beaucoup a une corrélation, sauf qu'une des fonctions est inversée dans le temps.

Exemple : calcul du produit de convolution d’un signal porte par g(t) = e~ y(t)

Pour des suites, on a un cas discret (peu utilisé mais utile pour comprendre) :
(fxg)n)= Y fln—m)g(m) (3.2)

Pour une valeur de n donnée, on peut comprendre cette expression comme une moyenne de tous les f(n)
pondérée par les différentes valeurs g(m) — ”moyenne mobile”.

Explication intuitive Si on fait le produit de convolution d’une fonction f par une impulsion de Dirac :

“+o0

(Fr8®= [ ft=nsu(r)dr = (e~ 5:3)

— 00
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ce qui revient a faire une translation de la fonction f.

Si on somme plusieurs pics de Dirac en les pondérants (g = ad, + 5Jp), on voit que 'on va faire la somme
de deux fonctions f pondérées par « et 8 et décalées respectivement de a et b.

Propriétés
— Commutativité
— Associativité
— Distributivité par rapport a ’addition
— Elément neutre : impulsion de Dirac
— Translation temporelle : Dirac retardé
— Convolution avec un peigne de Dirac :
Rappel, peigne de Dirac : Il = +oo o(t —mT).

m=—0o0

Convolution avec un ensemble de Dirac retardés :
—+00 —+00
(f*Ip)(t) = > fO)x6(t—mT)= (f+Ig){t)= Y f(t—mT) (3.4)

Fonction périodique formée par la recopie de f autour de chaque pic de Dirac.
— Lien avec la TF. Sans démonstration,

F(fg)=F(f)-Fg) (3.5)

et inversement :

F(f-9) =F(f)*Fg) (3.6)

T.F. du signal échantillonné

Signal x(t). Apres échantillonnage idéal & la période T, on calcule la T.F. :
Flze(t)] = F[(x - IOz, ) (t)]

D’apres le lien convolution-TF vu plus haut,

Flae(t)] = F[2(8)] « F [0, (1)]
D’aprés la théorie des distributions (& voir), la T.F. d'un peigne de Dirac est F [IIIg, (t)] = F, 3> __ 6(f—kF,)

k=—oc0
avec F, = 1/T,. Donc

+oo
f[we<t)]:X(f)*Fe Z 6(f_kFe)

k=—o0

On en déduit que, comme le produit de convolution est distributif et qu’on a la propriété (f x0)(t — tg) =
f{t —to) le spectre de . s’écrit :

+oo
Xc(f)=F. Y X(f-FkF.)

k=—o0

ou F, = 1/T, est la fréquence d’échantillonnage

Le spectre X.(f) d’un signal échantillonné & la fréquence F, est celui du signal non échantillonné
répété avec une période fréquentielle F,.
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4.2 Exemple de spectre, notion de repliement

On considere un signal réel z(t) dont le spectre et borné en fréquence :

(X (N

-F F,

max max f

cest a dire |f| > Fae = X(f)=0.
Si on échantillonne le signal, on obtient le spectre :
+oo
Xe(f)=F. Y X(f-FkF.)
k=—o0

deux cas :

- Fezszaa:

pas de recouvrement des motifs élémentaires Le motif central, correspondant a k = 0 est exactement

k=0
/_/;\
e X () e

-F

max

égal au spectre de z(t). On peut donc extraire X (f) et reconstituer le signal z(t). Il n’y a pas de perte
d’information lors de I’échantillonnage.

- Fe<2Fmam

Il y a recouvrement des motifs élémentaires de X.(f) (voir figure 3.1) On parle de repliement de spectres.
A cause des chevauchements, on ne peut plus récupérer le spectre X (f) du signal initial. On ne peut donc
pas reconstruire x(t) & partir de x.(t). Il y a perte d’information lors de I’échantillonnage.

4.3 Théoréme de Shannon

D’apres la section précédente
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zone de recouvrement PP G -
de deux motifs
s F,

FiG. 3.1:

Les conditions nécessaires et suffisantes pour que ’échantillonnage d’un signal ne produise pas de
perte d’information sont que le signal ait un support en fréquence borné (qu’il ait une fréquence
maximale F,q;) et que la fréquence d’échantillonnage F, soit supérieure au double de F, 4,

76 est appelée fréquence de Nyquist. Elle correspond a la fréquence maximale que peut avoir un signal

pour éviter les distortions lors de I’échantillonnage.

4.4 Signaux a support en fréquence non borné

Distortion du signal die au repliement — filtrage anti-repliement = filtre avant ’échantillonnage avec une
fréquence de coupure Fy,. < F,./2

5 Reconstruction d’un signal

6 Quantification



Systemes linéaires continus

1 Définition et classification

1.1 Exemples

Commengons par quelques exemples de ce que nous appelons ”systeme” :

— Systéme électrique : u,(t) — systéme RLC — u(t)

— Systeme biologique : pression de contact — sens du toucher — impulsion nerveuse
— Systeéme économique :

1.2 Définition

Systeme = ensemble d’éléments fonctionnels interagissant entre eux et établissant une relation entre des
signaux d’entrée et des signaux de sortie

— Signaux d’entrée (excitations) : x
— Signaux de sortie (réponses) : y
— si le systéme est noté S, reliant « et y, on note

y = Sla] (4.1)

1.3 Classification et caractéristiques

On classifie les systemes en fonction de leurs caractéristiques :

— Statique : La réponse a une excitation est instantanée. Ex : is(t) = —u.(t)

R

— Dynamique : Réponse fonction de I'excitation au temps t et aux temps précédents.
Exemple, systeme RC : Equation reliant entrée u.(t) et sortie ug(t)?

dug(t)

20 (1) = ) (4.2)

RC

— Monovariable : une seule variable d’entrée et une de sortie

31
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Ue(t) C —— Usg (t)

— Multivariable : plusieurs variables en entrée et/ou en sortie
— Linéarité : z =ax1+ fz2 = y=aSxi]+ BS[xe]

— Causalité : Réponse du systéeme ne peut pas se produire avant ’excitation qui ’engendre.
Alors, si z(t) =0 pour t <0 = y(t) =0 pour ¢t < 0.

— Invariance par translation dans le temps : si y(t) = S[z(t)], alors y(t —tg) = S[z(t —to)]. Le systeéme
est dit invariant.

— Stabilité : Systeme stable = excitation bornée = réponse bornée.
IM,, Vt, x(t) < M, = I M, Vt, y(t) < M;
Si le systeme est perturbé, il revient a son état initial lorsque cesse la perturbation.

Exemples

Exemple : tachymetre = linéaire, causal, invariant
Non linéaire : hauteur d’une vague en fonction du vent
Non causal : De Lorean dans ”Retour vers le futur”

Non invariant : parcmetre (tarif dépend du temps)

1.4 Systeme LTI

Dans la suite, étude des systéemes monovariables continus linéaires a temps invariant = systemes LTT.

2 Réponse temporelle d’un systeme LTI

2.1 Relation entrée/sortie

La relation entre I'entrée et la sortie d’'un systeme LTI la plus couramment utilisée est une équation
différentielle linéaire a coefficients constants :

by ™ () + -+ by (@) + boy(t) = ama™ () + - + a1z (1) + apz(t) (4.3)
avec f() (t) = L;{ff)

Pour caractériser complétement le systeéme, il suffit de connaitre les coefficients. Et si on connait z(t), on
peut calculer la sortie y(¢).

Exemple : circuit RLC
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2.2 Réponse impulsionnelle

Autre maniere de caractériser un systéme. La réponse impulsionnelle d’un systéme est sa réponse a une
entrée qui est une impulsion de Dirac. Notée communément h(t) :

h(t) = S[d(t)] (4.4)

systeme LTI

t t

Nous allons voir qu’on caractérise ainsi completement le systéme car on peut retrouver la réponse y(t) pour
n’importe quel signal d’entrée x(t).

On cherche donc la réponse du systéme & une excitation quelconque z(t). Nous avons vu que I'impulsion de
Dirac était 1’élément neutre de 'opération de convolution : x(t) = x(¢) * 6(t). Alors

+oo
a(t) = / 2(r)5(t — 7)dr (4.5)

— 00

Si on applique z(t) comme excitation, on a en sortie :

y(t) =S [ [ :O 2(F)(t — 7)dr (4.6)

notre systeme est linéaire donc

+oo
y(t) = / 2(F)S[3(t — 7)) dr (4.7)

—00

et le systéme a une invariance temporelle donc, par définition de la réponse impulsionnelle

S[6(t — 1)) = h(t — 1) (4.8)

On en déduit

C’est a dire

La réponse y(t) d’'un systéme & une excitation x(t) est le produit de convolution de I'excitation et
de la réponse impulsionnelle h(t) du systéme :

y(t) = z(t) * h(t) (4.10)

La réponse impulsionnelle caractérise donc completement le systeme puisque ce qui précede est vrai pour
toute excitation en entrée.

Stabilité : on dit qu'un systeme est stable si sa sortie est bornée lorsque son entrée est bornée. On montre
qu’un systéme est stable ssi sa réponse impulsionnelle est absolument intégrable ( fj;: |h(T)]dT < o0)
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3 Réponse fréquentielle d’'un systeme LTI

3.1 Réponse a un signal monochromatique (sinusoidal)

Considérons un systeéme de réponse impulsionnelle h auquel on envoie un signal d’entrée x(t) = A exp(j27 ft),
qui est un signal monochromatique (une seule fréquence). Le signal en sortie peut, d’apres le paragraphe 2.2
s’écrire

+oo
y(t) = h(t)xz(t) = [ h(r)x(t — 7)dT (4.11)
= /+OO h(T)AejZWf(t*T)dT (4.12)
= A/¥ it / o h(r)e 2™ dr (4.13)

(4.14)

ol on a sorti de I'intégrale ce qui ne dépendait pas de 7. On reconnait 'intégrale de la derniere ligne, il s’agit
de la TF de la réponse impulsionnelle, que nous notons H(f) :

H(f)= / - h(r)e 7> dr (4.15)

—0o0

La réponse d’un systéme LTI & un signal monochromatique complexe (sinusoidal) est ce méme signal
multiplié par le gain complexe H(f), transformée de Fourier de la réponse impulsionnelle

S [AeP™ 1] = h(t) x At = H(f) - Ae?*™ /! (4.16)

3.2 Réponse fréquentielle d'un systeme LTI

Un signal d’entrée quelconque peut, & ’aide d’'une TF inverse, s’exprimer sous la forme d’une somme de
signaux monochromatiques :

“+o0
x(t) = X(f)el?Itqr (4.17)
— 0o
On peut alors calculer le signal de sortie du systéme en utilisant la linéarité de l'intégrale :
+o0 )
y(t) = S[x(t)] = / S [X(f)e2 ] df (4.18)

— 00

Le résultat du paragraphe précédent, qui peut s’écrire :

S[X(NHe* ] = H(f)- X (f)- ™I (4.19)

permet d’obtenir :
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+oo
y(t) = H(f)X (f)e’* T df (4.20)
—o0
Ce qui peut étre interprété comme la TF inverse de la sortie y(¢) si on note Y (f) sa TF :

Y(f)=X(f)-H(f) (4.21)

Donc

Si y(t) = h(t) * z(t) est le signal de sortie d’un systéme LTI ayant comme entrée z(t) et comme
réponse impulsionnelle h(t), alors la TF de y(t), notée Y (f), s’écrit :

Y(f) = X(f)-H(f) (4.22)

H(f) est appelée fonction de transfert du systéme

H(f) fait donc office de représentation fréquentielle du systeme. Elle mesure la réponse du systéme & une
composante fréquentielle donnée du signal d’entrée. H(f) est un nombre complexe avec un module |H(f)| et
un argument ¢(f)

4 Transformée de Laplace

4.1 Définition

La TF d’un signal n’existe que si 'intégrale X (f) = fj:oo x(t)e=727Ftdt converge. Ceci n’est pas toujours
vrai. On améliore les choses en exigeant que le signal soit nul pour ¢ < 0. Toutes les intégrales iront alors de 0
a 4o0.

Mais ce nest pas suffisant. Si on multiplie z(¢) par une exponentielle décroissante de parametre o > 0 telle
que

“+o0
/ |z(t)e™ | dt < oo
0

et si on prend la TF de ce nouveau signal :
+oo )
X(f,0) = / z(t)e e 12ty
0
+o0
= / ac(t)e_(”+j2”f)tdt
0
Posons p =0+ j2nf, on a :
+oo
X(p) = / x(t)e Pldt
0

Ceci définit la transformée de Laplace du signal z(t). C’est une généralition de la TF, dans laquelle on
décompose le signal z(t) sur une base de fonctions exponentielles e P! avec p complexe. On la note parfois £(x)

4.2 Convergence

X (p) n’est défini que si U'intégrale converge. On appelle région de convergence (notée RC dans la suite),
I’ensemble des nombres complexes p qui font converger l'intégrale.
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Exemple : calcul de la T.L. de z(t) = e*(t)

4.3 Propriétés de la transformée de Laplace

Certaines identiques a celles de la TF :
Linéarité : a.z(t) + by(t) —> a.X(p) + b.Y (p)
— Décalage temporel : x(t — tp) KN exp(—pto) X (p)

— Décalage fréquentiel : exp(at)x(t) EEN X(p—a)
- Dérivation : £ (442777

dt
on peut intégrer par parties :
dx(t) /+°° da(t) _,
L = ——e P'dt 4.23
( dt ) o dt ¢ (4.23)
(o)
= [e_ptx(t)]go +p/ e Ply(t) dt (4.24)
0

= pL{z(t)} —=(07) (4.25)
= pX(p) —x(07) (4.26)
(4.27)

et de proche en proche, on peut montrer que la dérivée d’ordre (k) se transforme en :
c (x(k)(t)) = p" X (p) — p" L (0F) — P2z (07) — ... — 2D (0T) (4.28)

ot les z(07), 2 (0F), ...,z*=1(0) sont les conditions initiales, souvent nulles.
Conclusion : on transforme une dérivation dans le domaine temporel en multiplication dans le domaine
”fréquentiel”.

— Intégration : de facon symétrique a la dérivation :

!Aﬂﬂmle@ (4.29)
— Convolution : z(t) * h(t) I, X(p)- H(p)

Les transformées de Laplace ne sont pas toujours faciles a calculer, on utilise beaucoup les tables!!!

...... quelques exemples de TL .......

5 Utilité des TL pour les systemes LTI

5.1 TL appliquée a I'équa. diff d'un systéeme LTI

Un systéme répond & une entrée quelconque x(t) par une sortie y(t) = z(t) * h(t). La TL de la réponse est

alors

Y(o) = Xp)Hp) = Hp)=2 (4.30)

X(p)

on appelle H(p) la fonction de transfert complexe ou transmittance complexe du systéme.

Sip = j2rf appartient a la région de convergence de la représentation de Laplace, on peut relier H(p) a la

fonction de transfert H(f) :

H(f) = H(p)|p:j2ﬂf (4.31)
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Les systemes LTI sont régis par une équation différentielle linéaire a coefficients constants :

by ™ (1) + ... + b1y (t) + boy(t) = amz ™ () + ... + a1z (1) + apx(t) (4.32)
avec m < n

Si on suppose les conditions initiales nulles, c’est & dire () (0) = 0 Vi et y(0) =0 Vi, en appliquant
la TL a cette équation différentielle, on obtient :

bnp"Y (p) + ... + b1pY (p) + boY (p) = amp™ X (p) + ... + a1pX (p) + ao X (p) (4.33)

En mettant en facteur Y (p) dans un membre et X (p) dans 'autre, on obtient :

(bpp" + ... + b1p+b0) Y (p) = (amp™ + ... + a1p + ag) X (p) (4.34)
et donc on peut écrire la fonction de transfert :

Y(p) bmp™+...+bip+bo
H — = 4.35
(p) X(p) anp™ + ... +a1p + ag ( )

La fonction de transfert s’écrit sous la forme d’une fraction rationnelle de deux polynémes en p, N(p) =
AmP™ + ... + a1p + ag et D(p) = b,p™ + ... + bip + by de degrés respectifs m et n.

H(p) = M (4.36)

D(p)

5.2 Poles, zéros et stabilité du systeme

— Les poles du systéme sont les racines A; complexes du polynéme D(p). Ils sont soit réels, soit constitués
d’une paire de complexes conjugués.
— Les zéros du systéme sont les racines z; complexes du polynéme N (p).

On montre qu’'un systéme est stable si et seulement si tous les poles de H(p) ont une partie réelle
strictement négative

Rapel : décomposition en éléments simples

Décomposition en éléments simples :

soit une fraction

_ Pt amap" T ot asp’ farptag

F 4.37
®) P+ by1p" "t + 4 bap? + bip + bo (4.37)
elle peut se décomposer pour se mettre sous la forme
A A A
F(p) =T(p) + —— + ——— + —" (4.38)

ol les p,, sont les poles du systeme, c’est & dire les zéros du dénominateur. T'(p) est la partie entiere de F(p).
Utilité : il est beaucoup plus facile de faire la transformée de Laplace inverse sous cette forme!

Pour effectuer la décomposition, on a grossierement trois étapes
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1. La partie entiere n’est présente que si m > n. Dans ce cas, on réalise le quotient des polynomes. Nous
nous contenterons du cas ou la partie entiere est une constante.

2. Calculer les poles du systeme. Sin < 2, c’est simple. Sinon, on essaye les valeurs simples entieres, du genre
-2,-1,0,1,2,3,...
3. Calculer les coefficients A;. Pour ce faire, on multiplie successivement par les (p — p;) et on prend p = p;.

Ensuite, la TL™! étant une opération linéaire, il suffit de connaitre la TL inverse de 1/(p — p;)!

...... Ezxzemples ......

5.3 Caractérisation d'un systeme LTI

— équation différentielle reliant x(t) et y(t)
— réponse impulsionnelle h(t)

— fonction de transfert H(f)

— transmittance complexe H(p)



Filtrage analogique

1 Introduction

1.1 Définition d'un "filtrage”

Un signal peut contenir

— des composantes ou informations non pertinentes

— du bruit

— des valeurs aberrantes

— plusieurs composantes que 'on voudrait séparer

Filtrer = ne laisser passer que ce qui a un intérét, est pertinent

ceci implique de changer ou d’annuler certaines composantes d’'un signal
Finalement, tous les systémes que nous étudions sont des filtres

Il y a des filtres partout : equaliseur dans des appareils audio, suspensions dans les voitures, téléphonie
mobile, réglages graves/aigus sur un autoradio ...

..... Ezemples .....

1.2 Filtrage temporel et fréquentiel
2 Caractérisation dans le domaine fréquentiel (filtres élémetaires)

2.1 Filtre passe bas

On veut sélectionner les basses fréquences. Donc on veut rejeter les fréquences supérieures a une fréquence
de coupure f.. On dit que la bande passante est [0; f.]. Ceci donne une fonction de transfert dont le module
ressemble & :

.... Figure ....
bande passante d’un filtre : intervalle de fréquence dans lequel le gain du filtre G(f) est supérieur & un gain

de référence. Par exemple, en décibels -3 dB. Nous y reviendrons...

39
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2.2 Autres filtres

— Filtre passe-haut :
Sélection des fréquences > f., réjection des fréq < f..
Bande passante : [f.; +o0]

— Filtre passe-bande :
Sélection des fréquences appartenant & un intervalle [f.,; fc,], réjection des fréq en dehors de cet intervalle.
Bande passante : [fe,; fe,]

— Filtre coupe-bande :
Sélection des fréquences en dehors d’un intervalle [fe,; fe,], réjection des fréq appartenant a cet intervalle.
Bande passante : [0; fe,]| [fey; +00]

2.3 Filtre physiquement réalisable

Filtre physiquement réalisable = stable (il revient & son état initial apres excitation) et causal (la sortie ne
se produit pas avant lentrée)

Considérons un filtre passe-bas idéal, dont la fonction de transfert se résume & une fonction porte :

H(f) =r. (5.1)

la réponse impulsionnelle de ce filtre est la transformée de Fourier inverse de la fonction de transfert, et nous
avons vu qu’il s’agissait de

h(t) = fesine(2m f.t) (5.2)

La réponse impulsionnelle, c’est la réponse du systeme a un pic de Dirac en ¢t = 0. Celle que nous venons de
calculer commence en —oo! Autrement dit, la réponse commence avant ’excitation. Le systéme est non causal.

Ce filtre n’est donc pas physiquement réalisable. Ceci vient du fait que la fonction de transfert contient des
discontinuités ou des dérivées infinies (en fréquence). On doit donc trouver une approximation du filtre idéal.

3 Filtres classiques

3.1 Exemple simple

Filtre LC :

Calcul de la réponse du filtre

Réponse réelle

3.2 Filtre de Butterworth

La fonction de transfert réelle d’un filtre de Butterworth est de la forme

1

[H(w)| = T+ @r)en

(5.3)
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(Ingénieur britannique Stephen Butterworth en 1930!!)
C’est une facon d’exprimer tous les types de filtres, il faut juste remplacer €2 pour obtenir un filtre passe-haut,

w
passe-bande ou autre. Dans le cas du filtre passe-bas, on a Q = — o w, est la fréquence (plutot pulsation) de

We
coupure.

n est Pordre du filtre.

Caractéristiques :
— Réponse la plus plate possible dans la bande passante
— Pour un ordre n donné, 'atténuation asymptotique est de —20n dB/décade (a partir de w,, =1

ofF

—20F

A(w) /dB

—60F

—80}

— I I
100 0.01 o1

1

w/rad s~

Fic. 5.1: Norme de la réponse d’un filtre de Butterworth en dB. Les différentes courbes correspondent a différents ordres

La représentation complexe d’un filtre de Butterworth passe par ’expression de sa fonction de transfert
complexe ou bien de sa transmittance complexe. Apres calcul, on trouve que, suivant ’ordre, la transmittance
complexe (fonction de transfert au sens de Laplace) s’écrit pour les premiers ordres et pour une pulsation de
coupure we, =1 :

Ordre | Transmittance complexe
1

1 H(p) = Ty
9 H(p) = 2;

P2+ 1.4142p + 1
3| Hp) = 1

(p+D)@P*+p+1)
1| Hp) - :

(2 +0.7654p + 1)(p2 + 1.8478p + 1)

1

5 HO) = D T 0.6180p T D2+ L6180p £ 1)
6 | Hp) - :

(% + 0.5176p + 1)(p® + 1.4142p + 1)(p® + 1.9319p + 1)
7| Hp) = :

(P2 +0.3902p + 1)(p2 + L.1111p + 1)(p2 + 1.6629p + 1)(p® + 1.9616p + 1)

Il faut remplacer p par j§2 pour obtenir la fonction de transfert complexe.
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Réalisation

3.3 Adaptation au type de filtre

Le filtre que nous avons décrit précédemment est un filtre générique, c’est a dire qu’il faut remplacer 2
par une quantité dépendant de la pulsation w et de la pulsation de coupure w.. Le tableau ci-dessous donne le

Chapitre 5 — Filtrage analogique

changement de variable a faire en fonction du type de filtre :

Filtre Pulsations associées Changement de variable
w
passe-bas coupure w, Q- —
We
We
passe-haut coupure w, Q- —
w
)
w
— | +1
wo Wo
passe-bande | wy = y/wiws et B = wy — wq Q — B o
w
wo
w
wo wo
coupe-bande | wg = Jwiws et B = wy — wy Q — B N2
w
() o
wo

3.4 Caractérisation des filtres

Un filtre idéal est un filtre qui coupe parfaitement toutes les fréquences au dela (ou en dega, ¢a dépend du
type de filtre) d’une fréquence de coupure. Malheureusement, ceci n’est pas possible. En effet, ceci correspond
a une pente infiniment raide de la fonction de transfert a la fréqueune de coupure. Ou, si I'on veut, a une
discontinuité, ce qui veut dire des dérivées infinies, dans le domaine fréquentiel. Donc la réponse impulsionnelle
(TF inverse de la fonction de transfert) aurait des valeurs s’étendant de —oo & +o00, et donc des valeurs non
nulles a des temps négatifs. Ce qui veut dire que la réponse du systéme serait non causale puisqu’il y aurait un
signal en sortie avant que la cause ne se soit manifestée. Rappel : la réponse impulsionnelle est la réponse du
systeme a une impulsion de Dirac au temps ¢t = 0.

Un filtre idéal étant non causal, il n’est pas physiquement réalisable. On doit donc toujours faire une ap-
proximation du filtre idéal. Lorsqu’on réalise un filtre réel, on le caractérise par un gabarit qui spécifie
— la zone dans laquelle doit passer sa courbe en fréquence,
— la bande passante et la bande atténuée ou rejetée,
— les ondulations maximales admissibles dans la bande passante (parametre a sur la figure 5.2) et Patténuation
minimale dans la bande atténuée (parametre b sur la figure 5.2).
Un filtre réel est toujours un compromis entre atténuation et oscillations.

3.5 Autres filtres

Nous ne cherchons pas a étre exhaustifs, mais pour montrer diverses caractéristiques de filtres, il faut citer
ceux qui sont les plus classique.
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A|Gag(w)| en dB

bande passante bande atténuée

FiG. 5.2: Gabarit utilisé pour la caractérisation des filtres

Filtre de Tchebychev

Il y a deux types de filtres de Tchebychev, qui présentent des oscillations soit dans la bande passante (filtres
de Tchebychev de type I), soit dans la bande atténuée (filtres de Tchebychev de type II). Nous ne parlerons que
des premiers (type I), ceux de type II étant peu utilisés.

La norme de la fonction de transfert est donnée, pour un filtre de Tchebychev de type I, par
1

|Hn (jw)| = 11272 (Q) (5.4)

ou les T,, () sont les polynémes de Tchebychev :

| cos(n-arccos(x)) si|z] <1
Tnlz) = { ch(n - argch(x)) si|z] >1 (55)

Les filtres de Tchebychev sont caractérisés par une oscillation dans la bande passante, réglée par le parametre
e, pas d’oscillation en bande atténuée, une raideur de coupure importante. Un exemple de filtre passe-bas est
illustré sur la figure 5.3.

10
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Fi1G. 5.3: Exemple de filtre de Tchebychev passe-bas
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Filtres elliptiques ou de Cauer
Comparaison des filtres
Illustration sur la figure 5.4 du module de la fonction de transfert pour différents filtres. On observera

la différence en termes de raideur, d’atténuation et d’oscillations. En pratique, on choisit le filtre adapté au
probleme que 'on veut traiter.

Butterworth Chebyshev type 1
1 1 1 =
08 | n 08 -
0.6 06
04 [~ - 04 [~ -
02 - — 02 - =
0 = 0 ——
0 0.2 04 0.6 08 1 0 02 04 0.6 08 1
Chebyshev type 2 Elliptic
1 — 1 =
08 — 08 :\/\11 =
0.6 0.6
04 [~ n 04 [~ -
02 — 02 =
ol T o f—f—— N
0 0.2 04 0.6 08 1 0 02 04 0.6 08 1

F1c. 5.4: Comparaison de différents filtres : Butterworth, Tchebychev de type I et II, elliptique
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