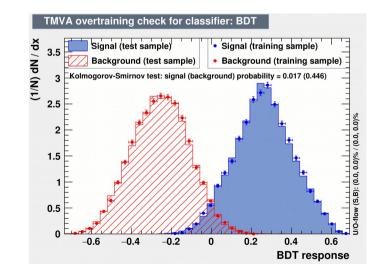

Mass fit of JpsiK*+

March 13th 2019, Annecy/Edinburgh meeting, M. Chefdeville

Status

- BR measurement strategy
 - BR₁ (JpsiX⁰) = BR₂ (JpsiK^{*+}) . N₁/N₂ . ϵ_2/ϵ_1 , with $\epsilon = \epsilon^{data}(x = e.g. BDT)$
 - For variables well described by MC: $\kappa = \epsilon^{data}/\epsilon^{MC} = 1 \rightarrow BR_1 = BR_2$. N_1/N_2 . $\epsilon_2^{MC}/\epsilon_1^{MC}$
 - If not well described, two cases:
 - Same MC distributions for x₁ and x₂ (e.g. ProbNNmu) $\rightarrow \kappa_1 = \kappa_2 \rightarrow \epsilon_2^{data} / \epsilon_1^{data} = \epsilon_2^{MC} / \epsilon_1^{MC}$
 - Different MC distributions (e.g. pi0_IT) \rightarrow reweight x_2 to match $x_1 \rightarrow$ recalculate ϵ_2^{MC}
- 1 BDT for each neutral modes (vertex, kinematics, isolation variables)
 - First BDT: trained on JpsiK*+ signal MC (possibility to use sPlot data, if really useful)
 - 1) Data/MC agreement: BDT cut efficiency on abundant JpsiK*+ \rightarrow fit model
 - 2) Identify problematic variables \rightarrow sPlot
 - 3) Compare MC variables between JpsiK^{*+} and JpsiX⁰ (e.g. JpsiPi0)

Data and BDT

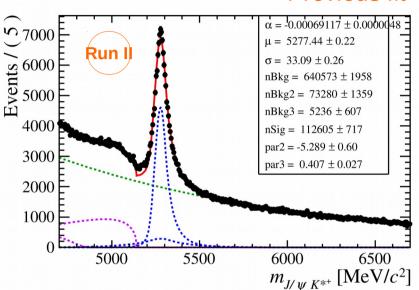

Run II data

CL(g1,g2)>0.05, PT(pi0)>1.5 GeV/c, PROBNNk(K⁺)>0.1, Δm(K^{*+})=150 MeV/c², Δm(pi0)=30 MeV/c², Δm(Jpsi)=100 MeV/c² DIRA>0.9995, IP<0.2, IPCHI2<20, VTXCHI2/NDOF<10 Fisher(B⁺)>-1.1

<u>BDT</u>

: R	ank	:	Variable	;	Variable Importance
-		7	Bplus PT	1	8.746e-02
:			Bplus DIRA		8.154e-02
				-	
:			min_MIPCHI2DV		8.023e-02
:			pi0_PT		7.177e-02
:			Bplus_IP	1	6.034e-02
:	6	1	max MIPCHI2DV	1	5.983e-02
:	7	÷	Bplus VTXCHI2	1	5.951e-02
:	8	5	Jpsi DIRA	:	5.765e-02
:	9	5	<pre>log(Bplus SmallestDeltaChi2OneTrack)</pre>	1	5.732e-02
:	10	÷	min IsNotH	1	5.340e-02
:	11	÷	pi0_0.40 IT	1	5.339e-02
			max IsNotE	:	5.170e-02
:	13	5	pi0_0.40 nc mult-2+pi0_0.40 cc mult	1	4.950e-02
:			Jpsi IP		4.660e-02
:			min IsNotE	1	4.469e-02
:	16	:	max_IsNotH	:	4.325e-02
:			<pre>Bplus NumVtxWithinChi2WindowOneTrack</pre>	:	4.183e-02
: -			·		

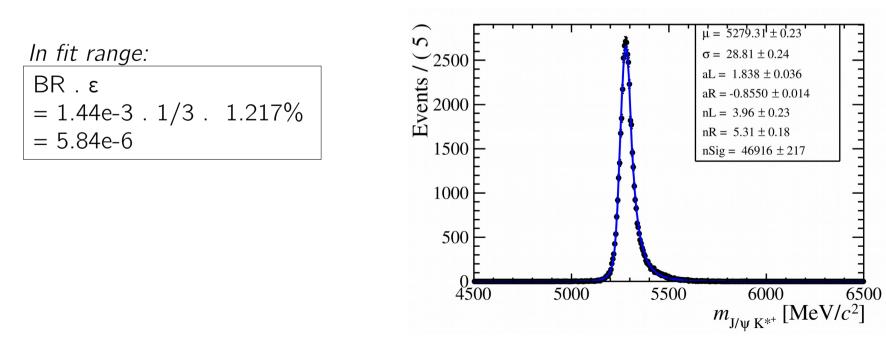
JpsiK^{*+} 2015+2016 MC truth-matched Bkg: data sidebands



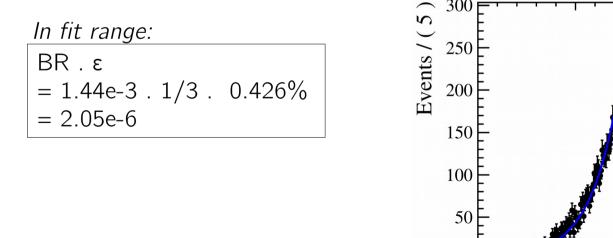
Fit model

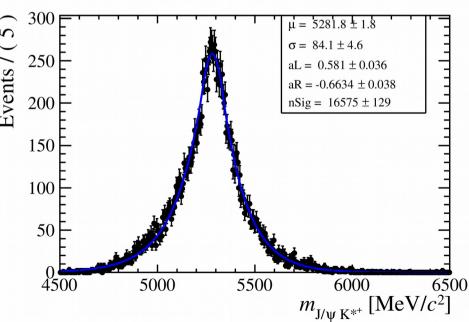
- Signal \rightarrow double-sided CB (tails from Run II MC) B⁺ \rightarrow J/psi K^{*}+[K⁺ pi0[gg]] $\rightarrow \mu$, σ , nSig
- Combinatorics \rightarrow exponential ($\alpha,$ nBkg)
- Tricky peaking backgrounds: between part-reco'ed & combinatorics (overlined)
 1) B⁺ → J/psi K*+[K+ pi0[gg]]
 2) B⁺ → J/psi K*+[K+ pi0[gg]]
 3) B⁰ → J/psi K*⁰[K+ (pi-) pi0[gg]]
 4) B⁺ → J/psi K+ pi0[gg]
 - Try to contrain relative fractions using known BR and Run II MC efficiencies. Pdf shapes from MC. Only yield floating: nBkg1.

- Partially reconstructed:
 - $\mathsf{B}^{_+}\to \mathsf{psi}(2\mathsf{S})$ [J/psi (pi+pi-)] K*+, restrict fit range to [5050,6000] MeV/c2
 - $B \rightarrow J/psi~K_1[K^{*_+}~pi]$, pdfShape from Run I MC, only yield floating nBkg2

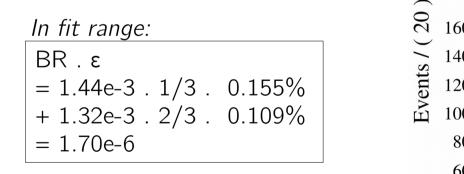


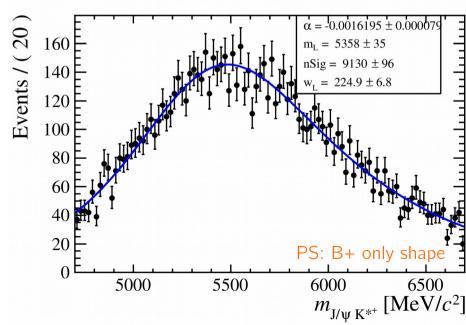
Previous fit


Signal J/psi K*+


- MC sample:
 - 4M, 1516UpDw, Event type: 12143401, decfile
 - Sim09e, Stripping28r1NoPrescalingFlagged, ALLSTREAMS.DST
- 47k events after selection (all truth-matched)
- Fit: double Crystal-Ball function

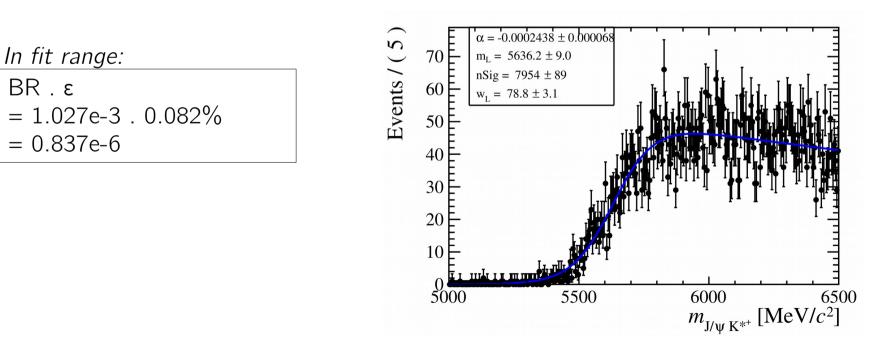
Peaking J/psi K*+[K+ pi0[gg]]


- MC sample:
 - 4M, 1516UpDw, Event type: 12143401, decfile
 - Sim09e, Stripping28r1NoPrescalingFlagged, ALLSTREAMS.DST
- 17k events after selection (only one photon is truth-matched)
- Fit: gaussian function with expo tails

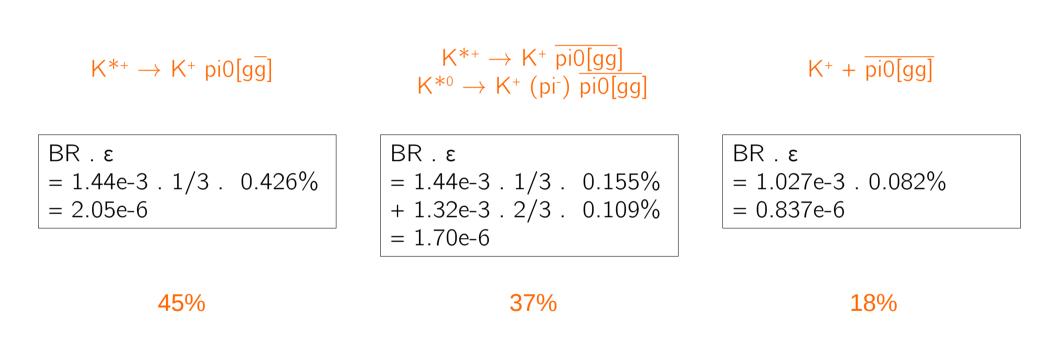


Peaking J/psi K*+[K+ pi0[gg]]

- Same MC sample as previous. Add B⁰ → Jpsi K*0[Kpi]
 - 2.8 M, 16Up (way more avail.), Event type: 11144001, decfile
 - Sim09b, Stripping26NoPrescalingFlagged (L0 bug?), ALLSTREAMS.LDST
- 6k-3k evts after sel. (JpsiK*+-JpsiK*0), photons not truth-matched
- Fit: gaussian function with expo tails



Peaking J/psi K⁺

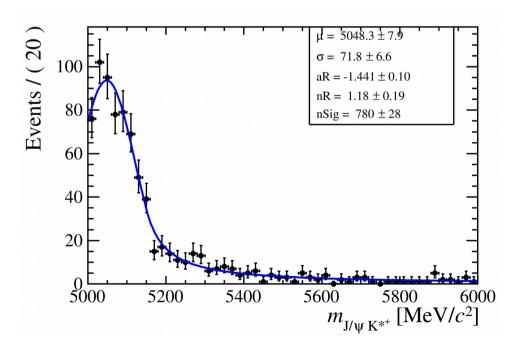

• MC sample:

BR.ε

- 4M, 2016UpDw (+4M ReDecay), Event type: 12143001, decfile
- Sim09e, Stripping28r1NoPrescalingFlagged, ALLSTREAMS.LDST
- 3.5k events after selection
- Fit: sigmoid x exponential function

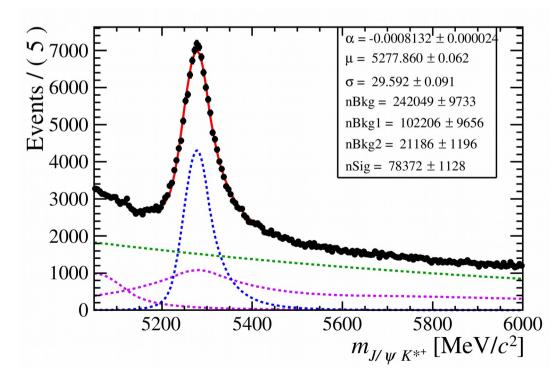
Merge peaking backgrounds

Sum yields 4.59e-6, compared to 5.84e-6 for signal, i.e. nSig/nBkg1 = 1.27


Part. reco'ed J/psi $K_1(1270)$

- MC sample:
 - 4M, 1112UpDw, Event type: 12443401
 - decfile : 10% of K1 decaying to K*+pi0, 1/3 of K*+ to K+pi0 \rightarrow 130 k events
 - Sim08i, Stripping21NoPrescalingFlagged (!MC bug!), ALLSTREAMS.DST
- 800 events after selection (photon and pi0s are not truth-matched)
- Fit: Crystal-Ball function

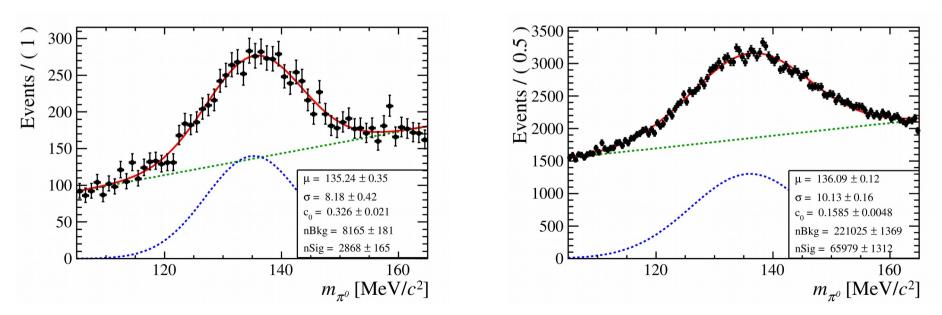
BR . ε = 2.9e-4 . 0.567% = 1.64e-6


Compared to 5.84e-6 for signal, i.e. nSig/nBkg2 = 3.56

Fit results

 Signal 78.3 k VS 138 k expected from: σ_{pp} (72.24 μb) . Lumi (5.9 /fb) . BR (2.66e-5) . ε (1.22e-2) = 138k
 Signal / Bkg1 = 0.77 (1.27 expected)
 Signal / Bkg2 = 3.7 (3.6 expected) 1 & 2 point at an ur

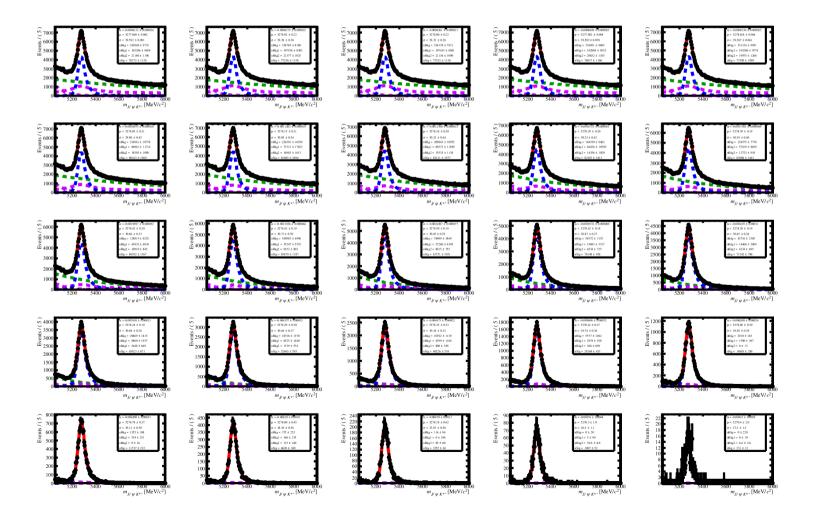
1 & 2 point at an underestimated signal yield



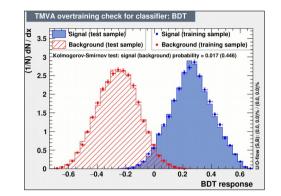
Pi0 purity

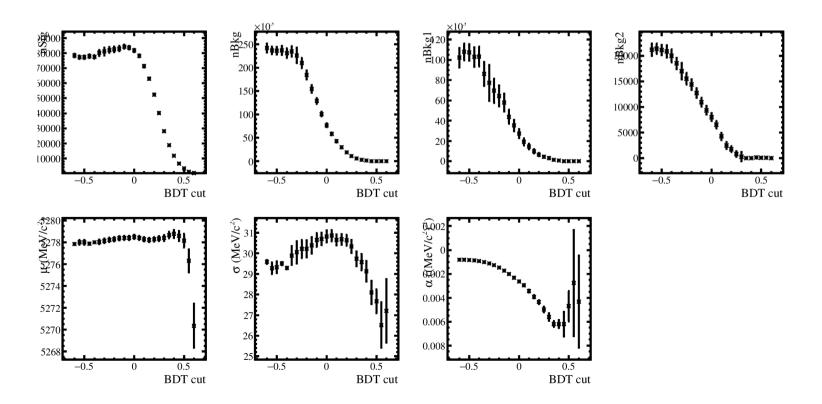
- Comparison between:
 - Random MC pi0 (from JpsiK+ sample) \rightarrow p_{MC} = S_{MC}/(S_{MC}+B_{MC}) = 0.26 (left plot)
 - High-mass data sideband (soft pi0 as well) \rightarrow $p_{_{data}}$ = 0.23 (right plot)
- For equal signal yields in data and MC:

$$B_{data}/B_{MC} = p_{MC}/p_{data} \cdot (1-p_{data})/(1-p_{MC}) = 1.17$$

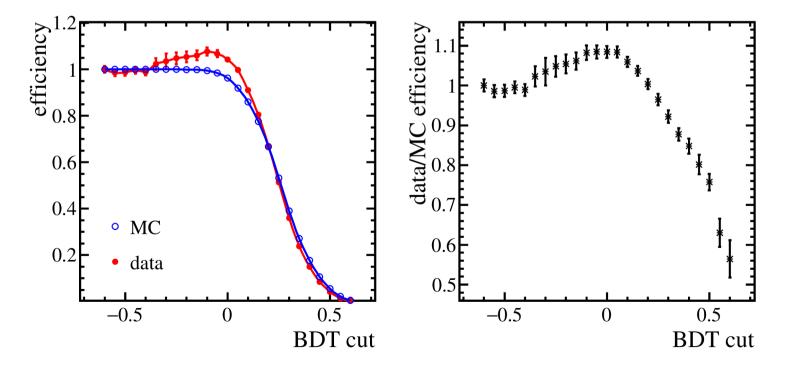

Takes expected nSig/nBkg1 from 1.27 to 1.08 (still larger than fitted 0.77)

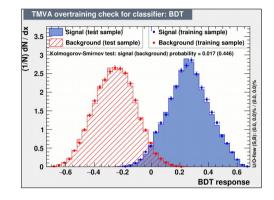
• For each BDT cut value



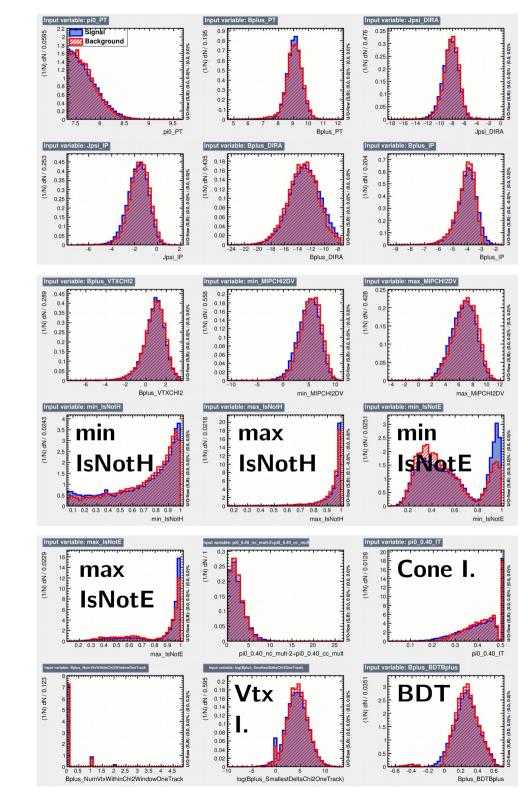

- Re-calculate relative yields of peaking bkgs & signal
- Re-fit MC mass shapes
- Re-fit data

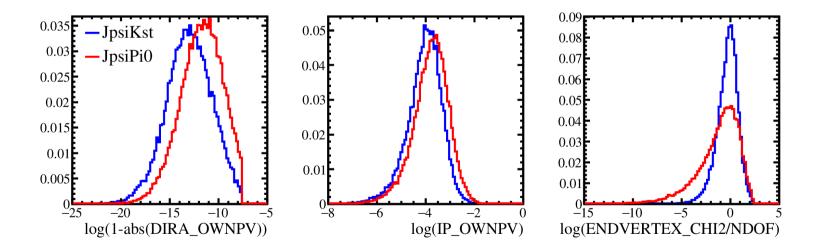
Fit parameters VS BDT


- Unexpected trend of signal yield (should be flat for BDT< -0.2)
- Normalise data efficiency to mass fit with no BDT cut
 - Data/MC ratio quickly off 1 when cutting on BDT
- Point towards not enough signal @ low BDT cut

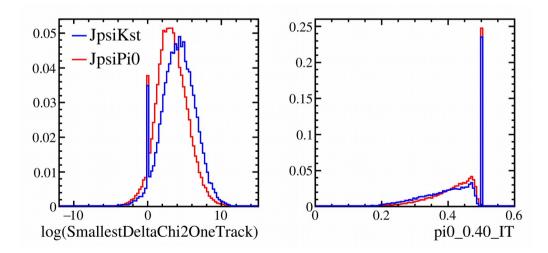


Fit parameters VS BDT

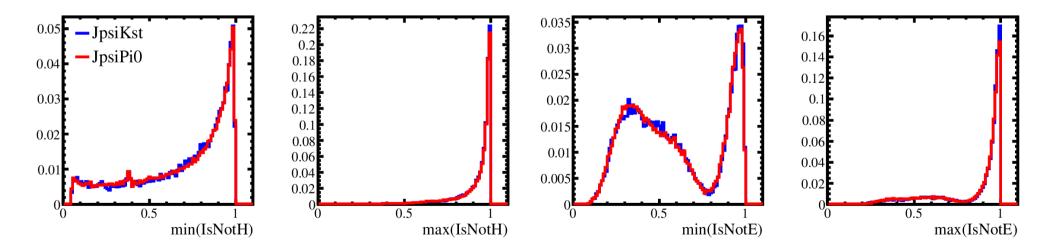

- Unexpected trend of signal yield (should be flat for BDT< -0.2)
- Normalise data efficiency to mass fit with no BDT cut
 - Data/MC ratio quickly off 1 when cutting on BDT
- Point towards not enough signal @ low BDT cut


sPlot data VS MC-truth

- Comparison
 - Run II MC, no weights
 - sWeighted data (previous fit, slide 11)
- Small offset in VTX var.
- Photon PID (isNotE) differently peaked @ 1
- Cone isolation quite OK
- Vertex isolation peak at log(0)=0
 - Less tracks to add in MC
- sWeighted BDT (bottom right)
 - Has negative entries...
 - Agreement much better than cut and fit


MC variables (1/3)

- 2016 MC, JpsiKst VS JpsiPi0
- Vertex variables: better vertex fit with 3 tracks
 - Expect good data/MC match (not too occupancy dependent)


MC variables (2/3)

- 2016 MC, JpsiKst VS JpsiPi0
- Occupancy variables:
 - TupleToolVertexIsoIn applied to $\mathsf{B} \to \mathsf{expect}$ same shape
 - Transerve isolation better for JpsiPi0 due to harder PT

MC variables (3/3)

- 2016 MC, JpsiKst VS JpsiPi0
- Photon PID variables:
 - Similar shapes, max(IsNotH) shows small PT-dependence?

Outlook

1) More work needed on the fit

- a) Try to better constrain the peaking bkgs (use data/MC pi0 purity)
- b) Need more $JpsiK_1$ MC, produce dedicated decfile

2) BR-analysis strategy in place

- 1) Start training BDTs for JpsiX^o
- 2) And working out fit models