Mass fit of JpsiK*+

March 29th 2019, Annecy/Edinburgh meeting, M. Chefdeville

Status

- During last 2 weeks: try to better constrain the fit
 - Look at JpsiK invariant mass of JpsiK* candidates
 - Fix contributions from combinatorics (e.g. $\mu\mu,\,\gamma\gamma)$
 - & a word on multi-dimensional mass fits

Reminder

Run II data: rather loose cuts expect for pi0

CL(g1,g2)>0.05, PT(pi0)>1.5 GeV/c, PROBNNk(K⁺)>0.1, $\Delta m(K^{*+})=150 \text{ MeV/c}^2$, $\Delta m(pi0)=30 \text{ MeV/c}^2$, $\Delta m(Jpsi)=100 \text{ MeV/c}^2$ DIRA>0.9995, IP<0.2, IPCHI2<20, VTXCHI2/NDOF<10 Fisher(B⁺)>-1.1

Current fit

- * Signal (expect twice more)
- * Combinatorics (all kind...)
- * JpsiK₁ and peaking bkg.
- * Peaking bkg:
 - mix of JpsiK, JpsiK*[gg], JpsiK*[gg]
 - relative yields fixed to MC
 - yield relative to signal
 - 1.6 times higher than expected

3

Contribution from JpsiK

- Expected yield & shape from 2016 s28r1 MC sample
- No JpsiK mass in latest Ntuples, however, it was saved in a previous production:
 - Not possible to aligned the cuts exactly (small differences in vertex cuts & Fisher)
 - Fraction of Run II data: 2015-2016-2017 (didn't check the lumi yet...)
- A new 2017 production (with JpsiK mass) was launched for validation

JpsiK yield

• Simplest fit used: exponential bkg + gaussian signal

 $N(JpsiK^{*+}) = 31240 + /-300 \text{ events}, N(JpsiK^{+}) = 5193 + /-100 \text{ events}$

- Comparison of ratios: this fit result is close to MC predictions (modulo combinatorics)
 - This fit (below): N(JpsiK⁺) / N(JpsiK^{*+}) = 16.6%
 - Full Run II fit: (nBkg1 . 18%) / nSig = (102206 . 18%) / 78372 = 23.5%
 - MC: ϵ .BR (JpsiK^{*+}) / ϵ .BR (JpsiK⁺) = 14.3% (data/MC combi ratio of 1.17 \rightarrow 16.7%)
- Relative yield seems correct \rightarrow could fix peaking bkg yields to signal yield

JpsiK shape

- Looking at JpsiK* mass for events around JpsiK peak @ 5280 MeV/c² ($3\sigma \text{ cut} \rightarrow 120 \text{ MeV/c}^2$ wide mass window
 - Subtract combinatorial contribution using events centered @ 5380 MeV/c^2
 - Shapes are similar, in particular inflexion point and width
 - Will do the fit

A focus on combinatorics

- Combinatorics: mainly $\gamma\gamma$, $\mu\mu$ ($\pi^{0}K^{+}$)
 - Is a single exponential sufficient? Can we get rid of it without BDT cut?
- Know and fix its yield
 - Fit signal & bkg yields to Jpsi and pi0 mass distributions
- Use Run II Jpsi, and previous Run I production with large sideband pi0
 - Jpsi combinatorics: 29% of candidates are fake over full mass range
 - Pi0 combinatorics (tricky fit): 56% of fake over [105,165] MeV/c² range

Apparté

- Run I versus Run II pi0 mass distributions (from JpsiK* Ntuples)
 - Agree quite well (with PT > 1.5 Ge/c)
 - OK to use the Run I shape for Run II fit

Mass shapes from pi0-combinatorics

- We can now fix the relative yields of fakes Jpsi & pi0 wrt to true... OK.
- Further info: determine their shapes
 - Do the Jpsi and pi0 fits in bins of Bmass \rightarrow nSig(Bplus_MM) & nBkg(Bplus_MM)
 - This also provides bkg-subtracted Bmass distributions
- Example: using 80 Bmass bins of 25 MeV/c^2
 - Use Jpsi & pi0 shapes from previous fits, let yields to float (& bkg c_0 for Jpsi)

Mass shapes from Jpsi-combinatorics

- We can now fix the relative yields of fakes Jpsi & pi0 wrt to true... OK.
- Further info: determine their shapes
 - Do the Jpsi and pi0 fits in bins of Bmass \rightarrow nSig(Bplus_MM) & nBkg(Bplus_MM)
 - This also provides bkg-subtracted Bmass distributions
- Example: using 80 Bmass bins of 25 MeV/c^2
 - Use Jpsi & pi0 shapes from previous fits, let yields to float (& bkg c_0 for Jpsi)

Jpsi-parameters per bins of Bmass

- Results with Jpsi (80 fits in backup):
 - an excess of bkg around Bmass, correlated with change of slope (too high for $K^*\mu\mu$)
 - Bmass distribution subtracted from $\mu\mu$ -combinatorial = nSig(M)
 - Can probably extract a slope from nBkg(M)

pi0-parameters per bins of Bmass

- Results with pi0 (80 fits in backup):
 - Signal shape sensitive to PT, varries over Bmass range (χ^2 not well behaved @ Bmass)
 - An excess of bkg around Bmass: gg peaking or just wrong fit? Fix sigma?
 - Can probably extract a slope from nBkg(M)

Combi-subtracted Bmass fits

- "How to use the previous info in Bmass fit" is under study...
- For now, we can fit the $\mu\mu$ or $\gamma\gamma$ combi-free distributions
 - For the $\gamma\gamma$ combi-free distrib.: remove all peaking bkg
 - For the $\mu\mu$ combi-free distrib.: remove all peaking bkg but $g\overline{g}$ (not quite right...)
- As most combi. come from pi0s, left plot is very clean (syst. from $g\overline{g}$ removed)
 - Yields 104.6 kevents (VS 78.4 k from non-subtracted Bmass fit), probably a bit more...

A try with K^{*+}

- K* mass quite dirty: γγ-combi + π⁰K+-combi + π+-misID
 But subtracted Bmass very pure (true K* almost = true B)
- Simple fit: Chebychev + gaussian, lots of room for improvement (next: param. from B region, or true pi0, use DTF-K* mass)

• Bmass fit: nBkg clearly overestimated, nSig should be higher

Outlook

- JpsiK*+ fit almost under control, then:
 - Move to BDT optimisation: BDT(vtx,kin,pid) VS BDT(vtx,kin) && pid
 - Apply it to other JpsiX^o
- Subtraction method, any worth?
 - Yes, to fix the yields from combinatorial bkg.
 - But, loose sPlot tool if fitting the bkg-subtracted Bmass distributions...
 - ... which can be used for cross-checks (same yields from all the fits)
 - Potentially interesting for JpsiPi0, JpsiEta(') where $\gamma\gamma$ (or γ)-combi dominates \rightarrow to be tried very soon
 - At the end, this is a simpler version of a multi-dimensional fit...
 - ... which could be used to subtract all contributions in one go.

Backups

Jpsi fits in Bmass bins (1/4)

Jpsi fits in Bmass bins (2/4)

Jpsi fits in Bmass bins (3/4)

Jpsi fits in Bmass bins (4/4)

pi0 fits in Bmass bins (1/4)

pi0 fits in Bmass bins (2/4)

pi0 fits in Bmass bins (3/4)

pi0 fits in Bmass bins (4/4)

K^{*+} fits in Bmass bins (1/4)

K^{*+} fits in Bmass bins (2/4)

K^{*+} fits in Bmass bins (3/4)

K^{*+} fits in Bmass bins (4/4)

