First look at new $J/\Psi \eta'[\rho\gamma]$ Ntuples

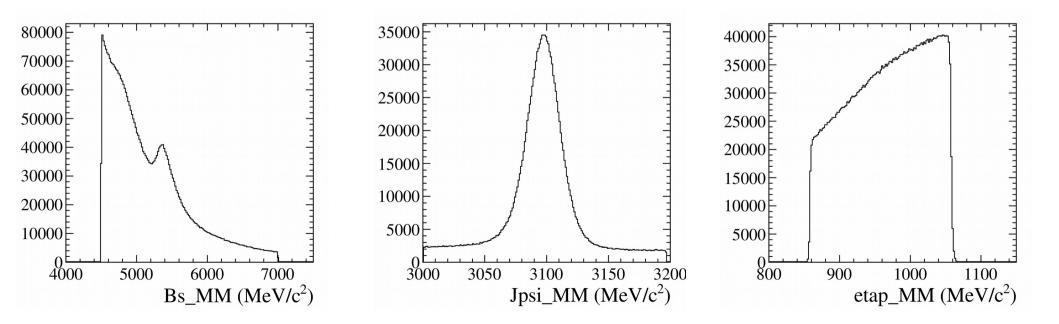
May 15th 2019, Annecy/Edinburgh meeting, M. Chefdeville

Status

- Little time to work on this lately (attended 2 conferences in last month)
 - Basically: only reproduced Run2 Ntuples of JpsiEtap with more variables
- Just had a look at the data this week
 - PID cuts & mass windows
 - Export JpsiK*+ BDT
 - First mass fits & cross-checks

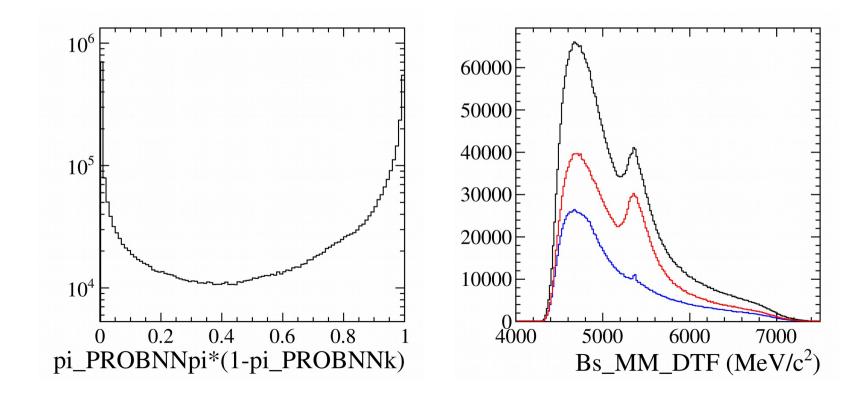
Run2 Ntuples

• Files available at:


/afs/cern.ch/work/c/chefdevi/public/Stefano/ (to be moved to /eos upon green light)

Contains 2016 MC & Run II data Decay Trees Tuples. Data lumi tuples yield:
 0.28 - 1.64 - 1.02 - 1.28 /fb for 2015, 2016, 2016 and 2018 respectively
 to be compared to 0.33 - 1.67 - 1.71 - 2.19 /fb from operation plots (link).

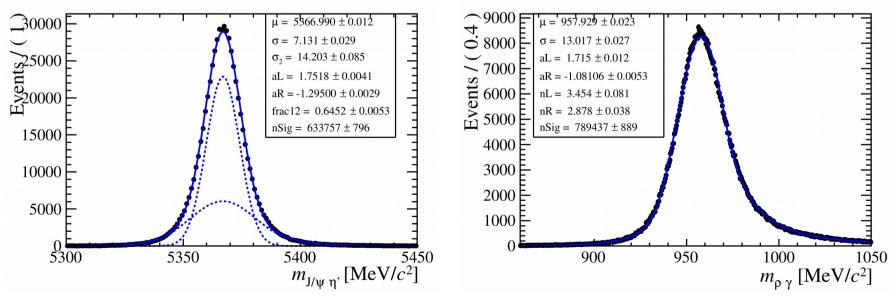
This can't be explained by rate of failed jobs (<1%).


Selections & mass distributions

- Rho[pipi]: StdLoosePions (PT> 200 MeV/c) (AM>600*MeV) & (AM<900*MeV) & (ADOCACHI2CUT(15, '')) (BPVVDZ>0) & (VFASPF(VCHI2)<9) & (BPVDIRA>0.95) & (BPVVDCHI2>25)
- Etap[RhoGamma]: StdLooseAllPhotons (PT > 200 MeV/c) (CL>0.05) (ADAMASS('eta_prime')< 100*MeV) & (APT>1500*MeV) → PS: MC has PT>2.25 GeV/c as gen cut
- Bs[JpsiEtap]: FullDSTDiMuonJpsi2MuMuDetachedLine (AM>4500*MeV) & (AM<7000*MeV) (BPVDIRA>0.9995) & (BPVIP()<0.2) & (BPVIPCHI2()<20) & (VFASPF(VCHI2PDOF)<10)

PID cuts

- Large and wide peak around Bs mass
 - Probably originates from high-BR JpsiK*[Kpi], JpsiPhi[KK]
 - Strongly suppressed by PID cut on pions (ProbNNpi*(1-ProbNNk) > 0.4)
- From now on, use Bmass from DTF with PV and (Jpsi, etap) mass constrains

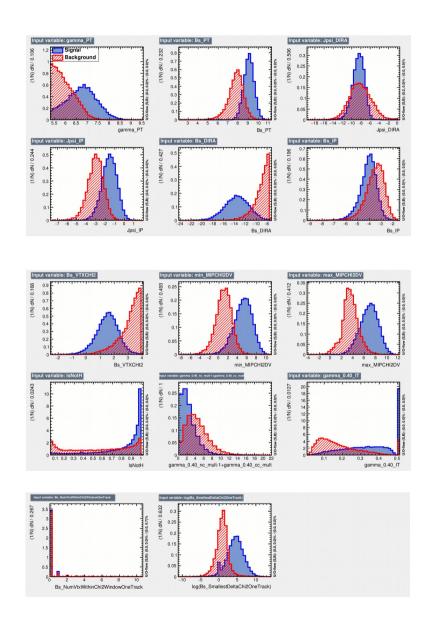


Mass windows & line shapes

- Use Sim09e-Pythia8, Stripping28r1NoPrescalingFlagged, 2016 signal MC (13144203)
 - About 8M events... truth-matched in Ntuples: about 11% (quite high)
- Sum of gaussian + gaussian with expo. tails for signal (common mean)

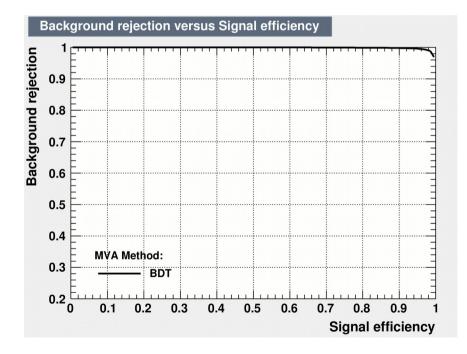
 $\sigma_1 = 7.1 \text{ MeV/c}^2 \text{ and } \sigma_2 = 14.2 \text{ MeV/c}^2$

• For etap, using dCB: $\mu = 957.9 \text{ MeV}/c^2$ and $\sigma = 13.0 \text{ MeV}/c^2$



Includes PID & mass window & soft BDT cut (see later)

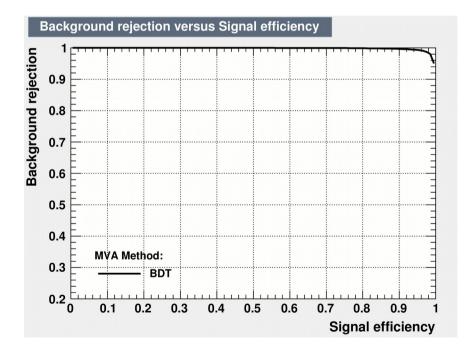
BDT from JpsiK*+

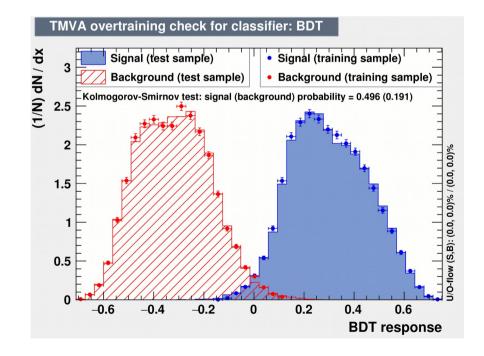

- Still working on best BDT with JpsiK*+ (single BDT VS double BDT)
- For now, use single BDT with set of variables as similar as possible
- Train MC signal VS data sideband (50k each): $\Delta m(\eta')>30 \text{ MeV/c}^2 \text{ and } m(Bs)>6500 \text{ MeV/c}^2$


	:	 Rank	:	Variable	:	Variable Importance
	:			Bs_PT	-	9.633e-02
	:	3	:	Bs_DIRA Bs_VTXCHI2 log(Ps_SmallestDeltaChi20neTrack)	:	9.576e-02 9.478e-02 9.068e-02
	:	5	:	<pre>log(Bs_SmallestDeltaChi2OneTrack) min_MIPCHI2DV max_MIPCHI2DV</pre>	:	8.331e-02 7.208e-02
	:	7	:	Bs_IP Jpsi IP	;	7.000e-02 6.657e-02
	:	9	:	gamma_PT gamma 0.40 IT	1	6.333e-02 6.164e-02
	:	11	;	Jpsi_DIRA IsNotH	-	5.998e-02 5.903e-02
	:			<pre>Bs_NumVtxWithinChi2WindowOneTrack gamma_0.40_nc_mult-1+gamma_0.40_cc_mult</pre>		
L	:		-			

Performance

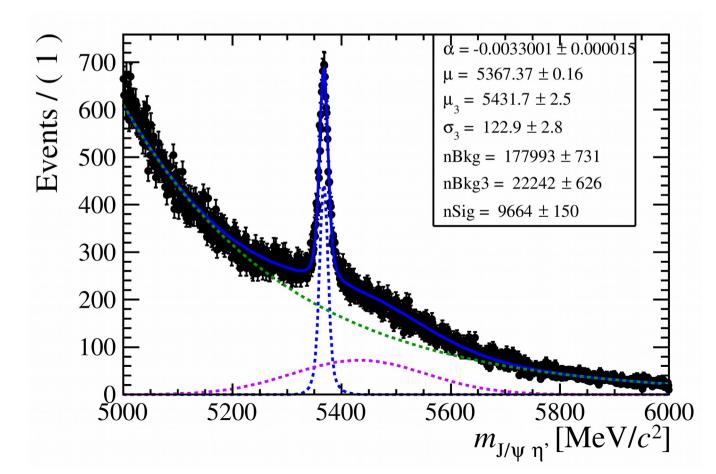
• With vertex, kinematic, isolation and calo PID variables

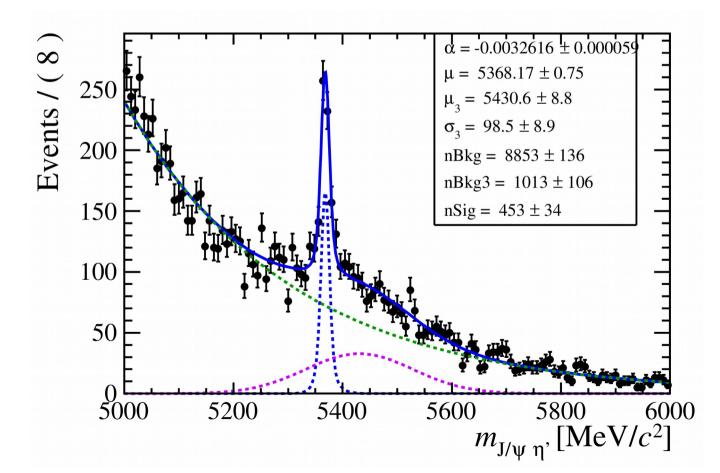




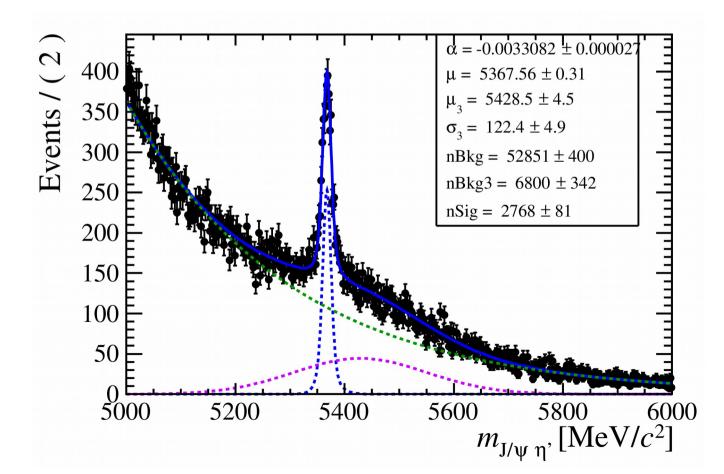
Performance

• BDT also trained without isolation and calo PID variables

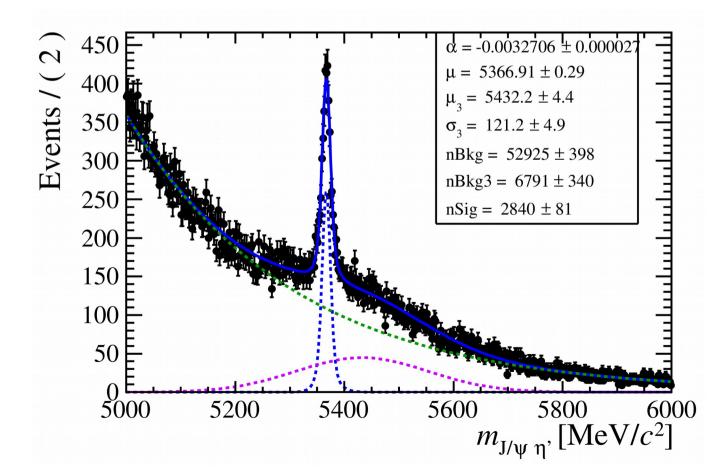

Very little impact... vertex-kin. variables are doing most of the job (4-track vertex)


First mass fits

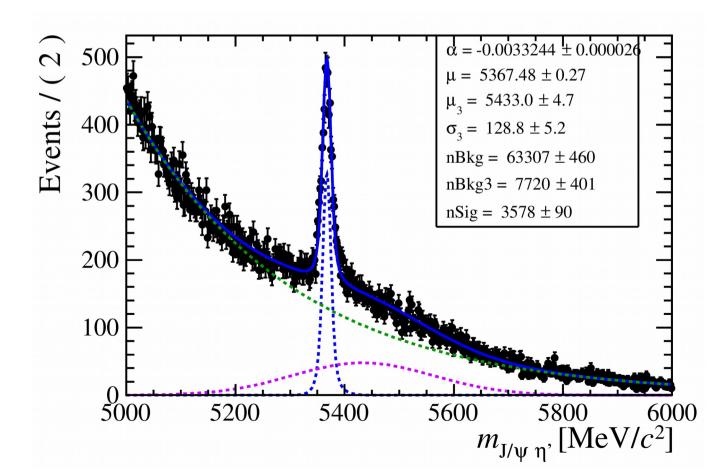
- PID (0.4) & BDT cut (0), 2.5- σ m-window for etap (30 MeV/c²), 30 MeV/c² for Jpsi
- Model: signal (μ) + combi. bkg (expo, α) + bump below Bs mass (gaussian, μ_3 , σ_3) Later could be some Lambdab0 \rightarrow Jpsi Lambda[ppi] with p+ reco'ed as a pion...
- For all of Run2, we find 9664 +/- 150 events


- For 2015, we find 453 +/- 34 events
- Ratio $nSig/L(tuple) = 453 / 280 = 1.62 \text{ event } / \text{ pb}^{-1}$

using L(Operation page): Ratio = 1.37 event / pb⁻¹


- For 2015, we find 2768 +/- 81 events
- Ratio nSig/L(tuple) = 2768 / 1640 = 1.69 event / pb⁻¹

using L(Operation page): Ratio = $1.66 \text{ event } / \text{ pb}^{-1}$


- For 2015, we find 2840 +/- 81 events
- Ratio nSig/L(tuple) = 2840 / 1020 = 2.78 event / pb⁻¹

using L(Operation page): Ratio = 1.66 event / pb^{-1}

- For 2015, we find 3578 +/- 90 events
- Ratio nSig/L(tuple) = 3578 / 1280 = 2.79 event / pb⁻¹

using L(Operation page): Ratio = 1.63 event / pb⁻¹

Outlook

- First look at new Ntuples:
 - With soft cuts: about 10⁴ JpsiEtap[RhoGamma] events in Run2
 - Clean signal with StdAllLoosePhotons (PT>200 MeV/c), any gain for lower PT?
 - \rightarrow could try StdVeryLooseAllPhotons (PT>75 MeV/c)
- Cross-checks:
 - Lumi from LumiTuple not reliable for 2017 & 2018 (issue with database?)
 - MC efficiency * CS * BR to be compared with measured yield
- Fit model:
 - MC available for JpsiK* and JpsiPhi, will have a look
 - Lambdab0, or $Bs \rightarrow JpsiPiPi...$ MC requests for B2CC meeting?
- My analysis
 - Besides cross-checks and bkg Ntupling, will have to focus back on JpsiPiO