News and status report

Oct 29th 2019, Annecy/Edinburgh meeting, M. Chefdeville

News

- LAPP phi_s team reinforced
 - Anthony Downes started his PhD on Oct. 1st
 - Branching ratios of Jpsi eta(') and TD analysis with Run 1-2 dataset
 - Start with performance study (photon eff.) taking over from Greg Cowan and Marion Lehuraux
 - We found a post-doc with experience on radiative decay, to start in Dec.
 - Will contribute to tagging tools (for Run 3 but also Run 1&2)
 - Will orient his work towards Run 3: adapt photon reco and our lines.
 + will participate to the migration of B2CC lines to the new framework
- Status of Jpsi eta(') analysis
 - Selection of normalisation channel (JpsiK^{*+}) finalised
 - MC for Jpsi eta'[rho g]

Selection of JpsiK*

- Meant to control BDT inputs and efficiency
- Previous selections of 2016-17-18 data:
 - using 3σ mass windows on pi0 and K*+ \rightarrow N = 66.3 k (left)
 - Using wide pi0 and fitting them in bins of m(B+) \rightarrow N = 106.8 k (right)
- Pros: Quite a gain of signal (large tails, non-resonant Kpi0?)
- Cons: how to project variables? + systematics from pi0 mass shape?

Pi0 mass fit

- Now: use sPlot to fit the pi0 mass and weight the B+ mass
- For now use the model used to fit in bins of B+ mass
 - Fit bkg (Chebychev o(2)) on sidebands only
 - Fix bkg and fit a gaussian with expo. tails as signal
 - Fix tails and fit bkg+signal to all bins

sPlot projections (2018)

sWeighted B⁺ mass fit (2016)

- sPlot data from each year separately (low χ^2 to be understood)
- In 2016: N = 30.3 k

sWeighted B⁺ mass fit (2017)

- sPlot data from each year separately
- In 2017: N = 31.1 k

sWeighted B^+ mass fit (2018)

- sPlot data from each year separately
- In 2016: N = 36.9 k
- Total of 98.3 k VS 64.9 k with mass windows, and 106.8 k with per Bmass bin

Vertex variables

- Run sPlot again to calculate sWeights from $\mathsf{B}^{\scriptscriptstyle +}$ mass fit
- Project variables using product of weights: w(pi0 fit) * w (B fit)

Kinematics and neutral PID

- Run sPlot again to calculate sWeights from $\mathsf{B}^{\scriptscriptstyle +}$ mass fit
- Project variables using product of weights: w(pi0 fit) * w (B fit)

Global event variables

- Run sPlot again to calculate sWeights from $\mathsf{B}^{\scriptscriptstyle +}$ mass fit
- Project variables using product of weights: w(pi0 fit) * w (B fit)
- Well-known discrepancies in occupancy variables

nSPDHits reweighting

- Run sPlot again to calculate sWeights from $\mathsf{B}^{\scriptscriptstyle +}$ mass fit
- Project variables using product of weights: w(pi0 fit) * w (B fit)
- Simple MC reweighting based on nSPDHits

nSPDHits reweighting

- Run sPlot again to calculate sWeights from $\mathsf{B}^{\scriptscriptstyle +}$ mass fit
- Project variables using product of weights: w(pi0 fit) * w (B fit)
- Simple MC reweighting based on nSPDHits

nSPDHits reweighting

- Simple MC reweighting based on nSPDHits
- Improves PID but isolation gets worse (vertex var. almost unaffacted)

nTracks reweighting

- Run sPlot again to calculate sWeights from $\mathsf{B}^{\scriptscriptstyle +}$ mass fit
- Project variables using product of weights: w(pi0 fit) * w (B fit)
- Simple MC reweighting based on nTracks

nTracks reweighting

- Run sPlot again to calculate sWeights from $\mathsf{B}^{\scriptscriptstyle +}$ mass fit
- Project variables using product of weights: w(pi0 fit) * w (B fit)
- Simple MC reweighting based on nTracks

nTracks reweighting

- Simple MC reweighting based on nTracks
- Improves PID but isolation gets worse (vertex var. almost unaffacted)

BDT

- Vertex & kinematic variables: very good data/MC agreement. Train BDT:
 - Signal MC-truth
 - High-mass sideband of sWeighted (w pi0 fit) B⁺ mass

BDT

- Vertex & kinematic variables: very good data/MC agreement. Train BDT:
 - Signal MC-truth
 - High-mass sideband of sWeighted (w pi0 fit) B^+ mass

BDT output

- As for the projection of input variables, we use the product of sWeights to extract the BDT distribution of signal candidates
 - Very good agreement, as expected

BDT output

- As for the projection of input variables, we use the product of sWeights to extract the BDT distribution of signal candidates
 - Seem to improve with simple reweighting based on nSPDHits

Prospects

- Multiple sPlot approach seems promising to remove combinatorics
- Already tried on Jpsi eta[gg] by Meril Reboud (LAPTH). Done after BDT cut so a eta peak is visible. Other modes to be investigated (currently trying JpsiPi0 with Jpsi and pi0 projections)
- What to do with calo variables? Just a cut?
- Now, solid BDT for BR measurement
- Investigate resampling tools.
 Do this together?

On Jpsi eta'[rho g]

- New Run 2 MC available
 - No tight generator-level cut, full-DST:

/MC/2016/Beam6500GeV-2016-MagUp-Nu1.6-25ns-Pythia8/Sim09h/Trig0x6139160F/Reco16/Turbo03/Stripping28r1NoPresca lingFlagged/13144201/ALLSTREAMS.DST

2M full-Sim + 4M Re-Decay

- B2JpsiPiPiK PHSP Run 2 MC also produced (same stat as above)
 - Better constrain mass shape
- Next:
 - Process MC
 - Finalise the vetos and fit model
 - Train BDT and find optimal cut (max. significance)
 - Measure branching against JpsiK*+