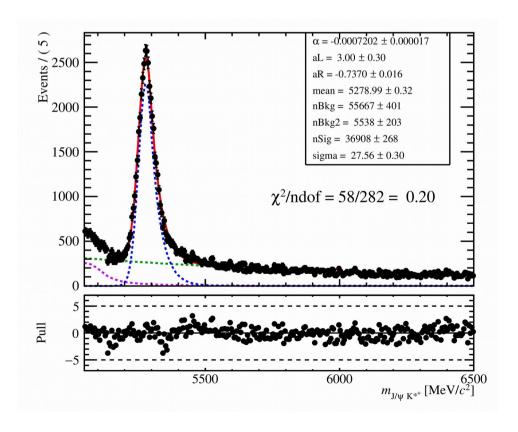
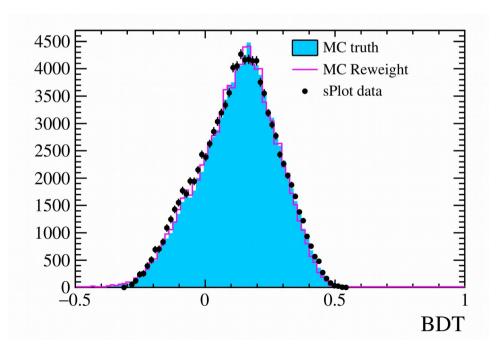
Mass fit of $B_s \to J/\psi \; \eta' [\rho \gamma]$

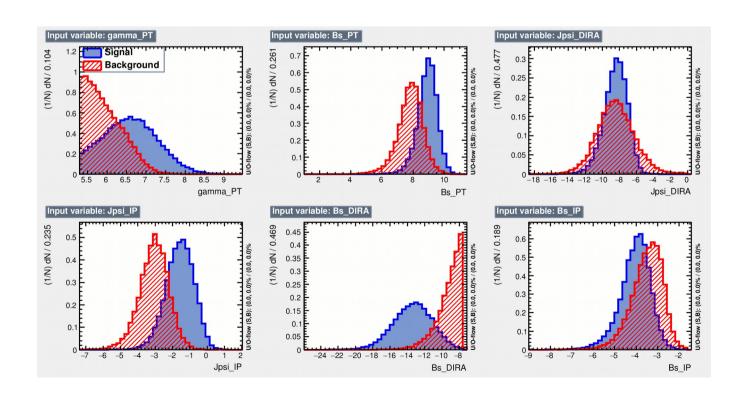

Nov 25th 2019, Annecy/Edinburgh meeting, M. Chefdeville


Outline

- Selections, BDT and vetoes
- Efficiencies & fit

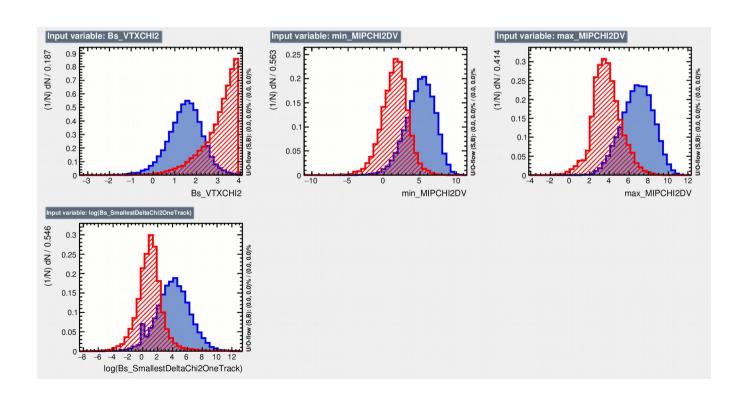
Reminder – JpsiK* BDT

- Control BDT input variables with double-sPlot of JpsiK*[Kpi0]
- Vertex and kinematics very well reproduced (→ predictable eff.): gamma_PT, B_PT, B_DIRA, B_IP, B_VTXCHI2, B_dChi21Trk, Jpsi DIRA, Jpsi IP, mu IPCHI2 MIN(MAX)

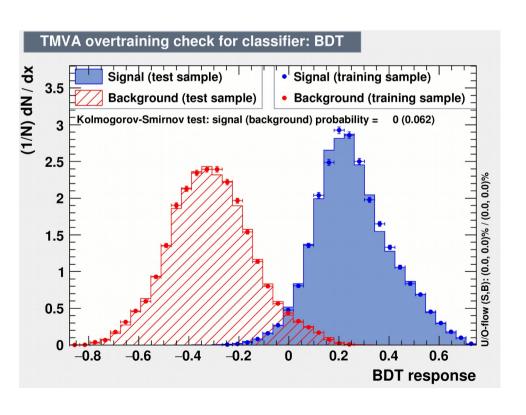


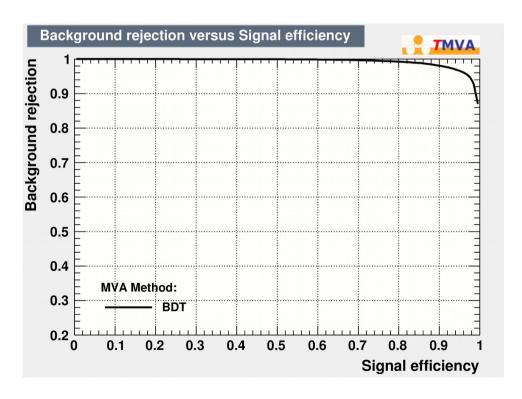
JpsiEtap selections

Offline: PROBNNpi*(1-PROBNNk)>0.4, for each pion

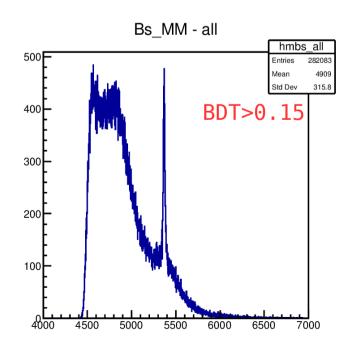

JpsiEtap BDT

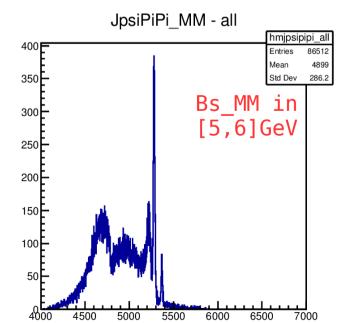
- New MC (no gen-level cut): 2+4M Std+ReDecay (2015-2016)
- MVA: 80k signal events VS 80k bkg 2016 events defined as: abs(Jpsi MM-3096)<30 && Bs MM>6000

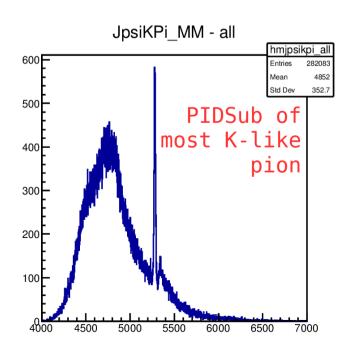

JpsiEtap BDT


- New MC (no gen-level cut): 2+4M Std+ReDecay (2015-2016)
- MVA: 80k signal events VS 80k bkg 2016 events defined as: abs(Jpsi MM-3096)<30 && Bs MM>6000

JpsiEtap BDT

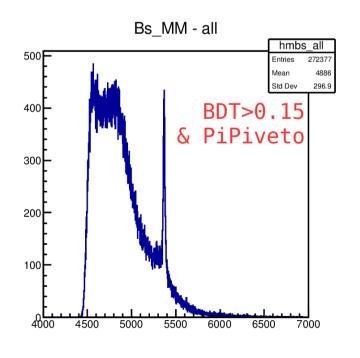

- New MC (no gen-level cut): 2+4M Std+ReDecay (2015-2016)
- MVA: 80k signal events VS 80k bkg 2016 events defined as: abs(Jpsi MM-3096)<30 && Bs MM>6000

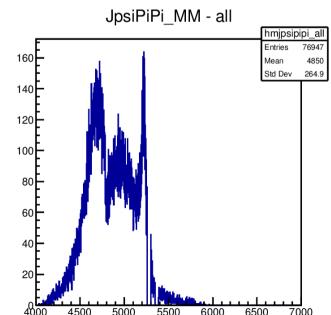


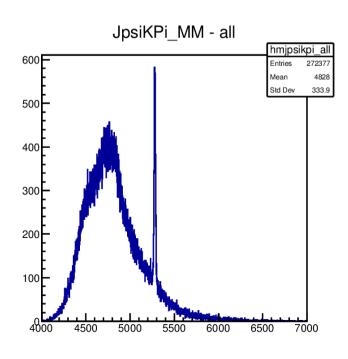


BDT cut (2016-17-18 data)

- Calculate significance (S/sqrt(S+B)) for various cut
 - S(x) = N(BDT>0) * eff (BDT>x), with eff deduced from MC BDT distribution and N(BDT>0) from simple mass fit (gauss+expo)
 - B(x) = N(B) taken from an expo fit of sideband region (>6 GeV). Expo function is then extrapolated to the signal region
- The significance reaches a maximum (of 76) at BDT = 0.15

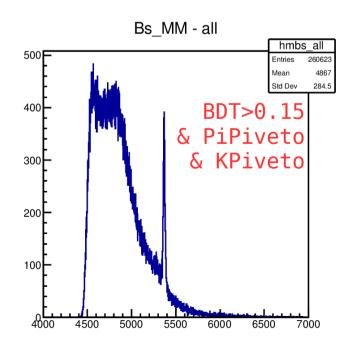


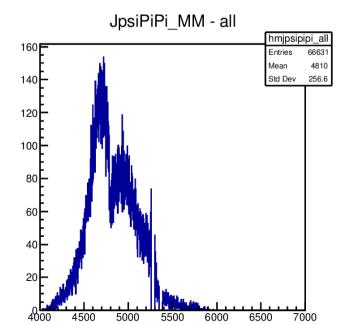


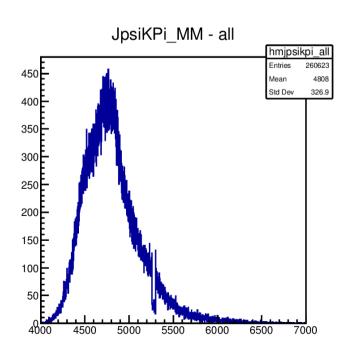


JpsiPiPi vetoes

- Veto events with mass within 2.5 sigma of B_{d,s} masses (20 MeV)
 - Signal efficiency (98.1%)
 - JpsiPiPi efficency (8.2%). JpsiPiPi mass distribution not gaussian ← calculated from DTF 4-v with etap mass constrain: quite some outliers at lower mass.

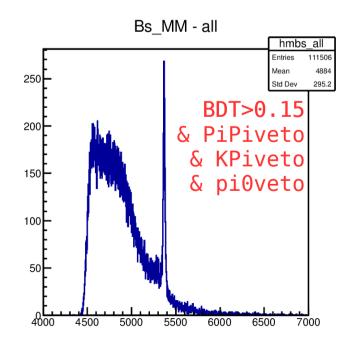


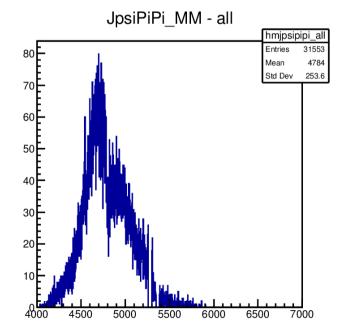


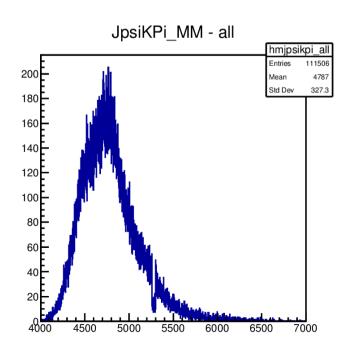


JpsiKPi veto

- For events with mass within 2.5 sigma of B_d masses (20 MeV): tigher PID cut (PID<0.95) on most kaon-like pion (highest PID). Preferable to just a veto on $[m((\pi_1 \rightarrow) K_1 \pi_2) \text{ or } m((\pi_2 \rightarrow) K_2 \pi_1)]^*$
 - Signal efficiency, eff = 96.9% (88.2%*)
 - JpsiK*0 efficency: eff = 13.8% (5%*)

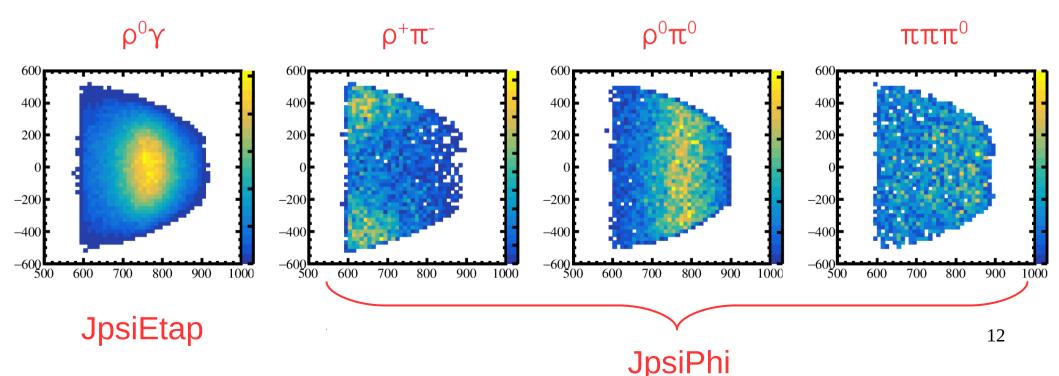


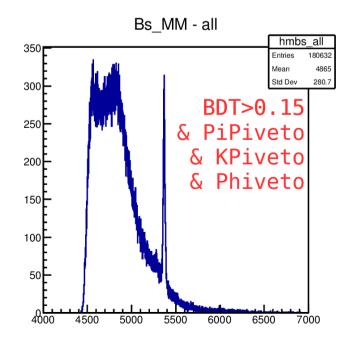


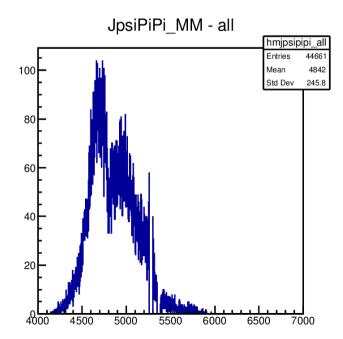


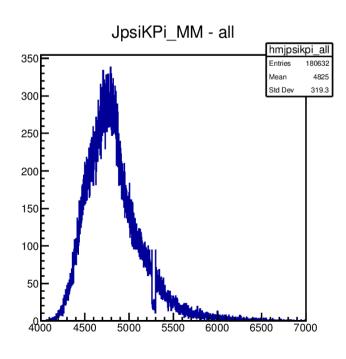
JpsiPhi veto

- With Phi → PiPiPi0, hard to veto as pi0 not fully reco'ed
- Try with pi0veto on the reco'ed photon
 - Signal: $72.0\% \rightarrow$ wrong association 28.0% of time
 - JpsiPhi: 52.4% → correct association 19.6% of time but high cost on signal



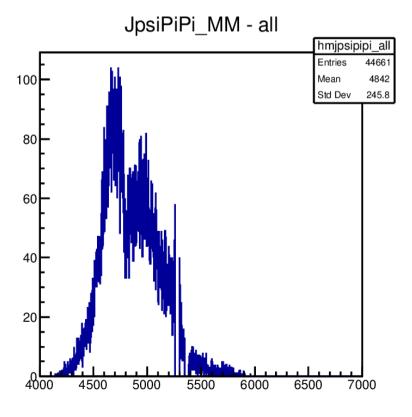

JpsiPhi decays

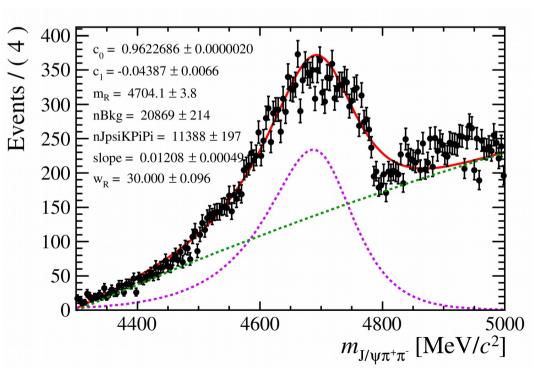

- MC sample is a cocktail of the resonant and non-R decays $\rho^+\pi^-$ (27.8%), $\rho^-\pi^+$ (27.8%), $\rho^0\pi^0$ (27.8%), $\pi^+\pi^-\pi^0$ (16.6%)
- Kinematics closest to signal when charged pions come from ρ^0 Charged ρ^+ : different kinematics $\to m(\pi_1\gamma)$ - $m(\pi_2\gamma)$ VS $m(\pi\pi)$ Use $|\Delta m| < 320$ MeV and $m(\pi\pi)>650$ MeV



JpsiPhi veto

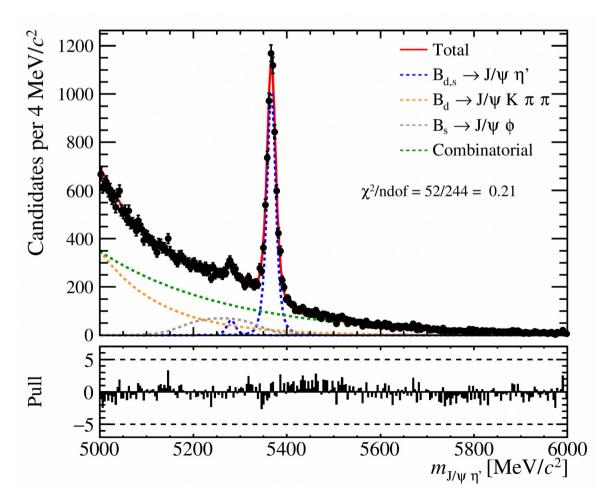
- With $|\Delta m| < 320$ MeV and $m(\pi\pi) > 650$ MeV
 - Signal: 86.6% (VS 72.0% with pi0 veto)
 - JpsiPhi: 39.9% (ρπ), 76.9% (ρ 0 π 0), 68.9% (πππ 0)
 - = 65.4% (VS 62.4% with pi0 veto)


Expected yields after sel. & vetoes


- For the yield of $B^+ \rightarrow Jpsi \ KPiPi \ (new Run2 MC available)$
 - We can also consider the neutral decay to Jpsi K⁰pipi and add a factor of 2 to BR. Case of kaon misID is not considered.
- Relevant bkg: JpsiPhi23Pi & JpsiKPiPi = 0.47 & 0.12 of signal

Mode	Bs → JpsiPiPi	B0 → JpsiPiPi	Bs → JpsiPhi Phi[KK]	Bs → JpsiPhi Phi[pipipi0]	B0 → JpsiK*	B+ → JpsiKpipi	Signal
eff (%)	0.02%	Assume same as Bs mode	6×10 ⁻⁷	0.51%	0.003%	0.003%	1.81%
BR	2.13×10 ⁻⁴	1.61×10 ⁻⁴	5.2x10 ⁻⁴	1.6x10 ⁻⁴	5.12x10 ⁻³	2x3.2x10 ⁻³	0.96×10 ⁻⁴
eff.BRx10 ⁶	0.035	0.026	0.00031	0.82	0.00017	0.20	1.74

More on JpsiKPiPi


- To constrain the JpsiEtap fit more
 - Try to get the JpsiKPiPi yield from the JpsiPiPi fit
 - At this stage, I don't have the shapes yet (forget the fit)
 - N(JpsiKPiPi) around 11388

Fit model & results

• Parameters: yields of signal ($N_{Bs} \& N_{Bd}$), of combinatorial (N_{Bkg}), of JpsiPhi (relative to signal (R_{Phi}), data/MC signal resolution (S_{σ}), slope of combinatorial (α).


```
N_{Bs} = 6.63192e+03 (1.00436e+02)

N_{B0} = 4.08152e+02 (6.49563e+01)

N_{Bkg} = 2.32254e+04 (2.36847e+02)

R_{Phi} = 4.66127e-01 (2.83615e-02)
```

$$S_{\sigma} = 1.20694e+00 (2.17750e-02)$$

 $\alpha = -3.64928e-03 (3.43603e-05)$

Fit model & results

- Signal yields: 6631 Bs (1.5%) & 408 Bd (16%)
- JpsiPhi yield is 0.47 that of signal when 0.47 is expected
- JpsiKPiPi yield was fixed. Given N_{Bs}, relative yield is 20 times off!
- Low Chi2: poor description of region on the right side of peak


```
N_{Bs} = 6.63192e+03 (1.00436e+02)

N_{B0} = 4.08152e+02 (6.49563e+01)

N_{Bkg} = 2.32254e+04 (2.36847e+02)

R_{Phi} = 4.66127e-01 (2.83615e-02)
```

$$S_{\sigma} = 1.20694e+00 (2.17750e-02)$$

 $\alpha = -3.64928e-03 (3.43603e-05)$

Outlook

- With current cuts: we measure the BR of the Bs to 1.5% precision, and the Bd to 15% only. What purity do we want?
 - Physics case dependent: BR, eta/eta' mixing, lifetime, TD
 - For absolute BR with JpsiK* normalisation: 8.4%
 - + fs/fd (5.8% at 7 TeV) \rightarrow 10.2%
 - Current PDG value for JpsiEtap (12%)
 - \rightarrow do we want to use another decay? JpsiPhi ($\sigma(BR)$ 7.4%)
- This analysis:
 - Why is JpsiKPiPi so large?
 - Further improvement to JpsiPhi: when pi0veto=1 and a second photon is reco'ed, fully reconstruct the Bs decay and check the mass. Not practical to do with DV but will try.
 - Right-hand side of Bs mass: fake photons?