Branching fraction of $B_{_s} \to J/\psi \; \eta' [\rho \gamma]$

Dec 19th 2019, Annecy/Edinburgh meeting, M. Chefdeville

Outline

- Reminder
- Strategy for BR and new DiMuon data reprocessing
 - JpsiPhi with Phi23Pi and Phi2KK
- Improved fit model
- First BR
- Outlook

Reminder – previous mass fit

- PID + $\Delta m(\rho^0, \eta, J/\psi)$ + BDT + mass vetoes ($\pi\pi$, K*, ϕ): eff(S) = 1.8%
- Latest fit: 6631(1.5%) signal candidates, poor χ^2 /Ndf (0.21), signal/JpsiPhi ratio as expected (roughly half of signal)
- To be improved: fixed JpsiKpipi contribution (using m(JpsiPiPi) & RapidSim), fit quality on right-hand side of peak (mis-ID'ed contributions)

- Since then:
 - Try to improve the JpsiPhi23Pi veto
 - Improve fit model
 - Select a normalisation mode
 - First BR

Normalisation mode

- Physics goals: eta/eta' mixing and phi_s, but also opportunity to improve BR PDG values. Current average (12%) dominated by:
 - LHCb ratio of JpsiEtap/JpsiRho0 (15%) + abs. JpsiRho0 (7%)
 - Belle absolute measurement of JpsiEtap (28%)

$oldsymbol{B}^{0}_{s} ightarrowoldsymbol{J}/\psi(1S)oldsymbol{\eta}^{'}$				(INSPIRE sear	rch
► expand all datablocks					
$* \Gamma(\ B^0_s \rightarrow J/\psi(1S)\eta^{\ '} \)/\Gamma(\ B^0_s \rightarrow J/\psi(1S)\eta \)$]	Γ_{55}/Γ_{52}
$* \Gamma(\; B^0_s \rightarrow \psi(2S)\eta^{\;'} \;)/\Gamma(\; B^0_s \rightarrow J/\psi(1S)\eta^{\;'} \;)$]	Γ_{81}/Γ_{55}
- $\Gamma(~B^0_s ightarrow J/\psi(1S)\eta^{~'})/\Gamma_{total}$					Γ_{55}/Γ
VALUE (10^{-4})	DOCUMENT ID		TECN	COMMENT	
3.3 ± 0.4	OUR AVERAGE				
$3.2 \ {}^{+0.4}_{-0.5} \ {\pm}0.2$	1 AAIJ	2013A	LHCB	pp at 7 TeV	
$3.71 \pm 0.61 \stackrel{+0.85}{_{-0.60}}$	2 LI	2012	BELL	$e^+ e^- ightarrow \varUpsilon(4S)$	
¹ AAIJ 2013A reports [$\Gamma(B_s^0 \rightarrow J/\psi(1S)\eta')/\Gamma_{\text{total}}$] / [B($B^0 \rightarrow J/\psi(1S)\rho^0$)] = 12.7 ±1.1 $^{+0.5+1.0}_{-1.3-0.9}$ which we multiply by our best value B($B^0 \rightarrow J/\psi(1S)\rho^0$) = (2.55 $^{+0.18}_{-0.16}$) ×10 ⁻⁵ . Our first error is their experiment's error and our second error is the systematic error from using our best value.					
² Observed for the first time with s on N($B_s^{(*)}\overline{B}_s^{(*)}$).	ignificances over 10 σ . The	e second erro	r are total s	systematic uncertainties including the error	
References:					
AAIJ 2013A NP B867 547	Evidence for the Decay B^0 B^0_s Meson Decays to $J/\psi\eta$	$ ightarrow J/\psi\omega$ and and $J/\psi\eta^{'}$	Measuren	nent of the Relative Branching Fractions of	
LI 2012 PRL 108 181808	First Observation of $B^0_s o s$	$J/\psi\eta$ and B_s^0	$ ightarrow J/\psi\eta^{\prime}$		

Normalisation mode

- Physics goals: eta/eta' mixing and phi_s, but also opportunity to improve BR PDG values. Current average (12%) dominated by:
 - LHCb ratio of JpsiEtap/JpsiRho0 (15%) + abs. JpsiRho0 (7%)
 - Belle absolute measurement of JpsiEtap (28%)
- Proposal: normalize to JpsiPhi:
 - Ratio JpsiEtap/JpsiPhi (10.5%, see next slide) + abs. JpsiPhi(7.4%)

LHCb ratio JpsiEtap/JpsiRho0

- Uses 1 /fb 7 TeV data (arxiv). Relative error of 15% splits as:
 - Statistical error (8.7%) to be reduced by factor of 4 (full Run1+2)
 - Systematics (+4% and -10%): photon and pion reconstruction will stay. Room for improvement: γ factor with $\chi_{c1}K^+ / J/\psi K^+$, $\pi\pi \rightarrow KK$ mass fit)
 - Hadronisation fraction (8%) could be absorbed in a Bs normalisation mode

New reprocessing of Run2 DiMuon

- JpsiEtap (idem)
- JpsiPhi[KK]
 - PT cut on Phi equal to PT cut on Etap = 1.5 GeV (VS 0.5 GeV in phi_s analysis)
 - PID: ProbNNk>0.1
- JpsiPhi[PiPiPi0]
 - Last presentation: eff_pi0veto = 72% & 52% for S & B resp. \rightarrow veto genuine pi0 20% of the time but big cost on signal
 - \rightarrow full reco of JpsiPhi + mass veto should reduce the cost on signal
 - Build non-resonant Phi2PiPiPi0 decay and JpsiPhi
 - Use resolved pi0 with PT>1 GeV
- Process 2016-2017-2018

Mass distributions - JpsiEtap

• JpsiEtap (stat consistent with previous Dimuon processing)

Mass distributions - JpsiPhi23Pi

- JpsiEtap (stat consistent with previous Dimuon processing)
- JpsiPhi23Pi: with pi0 and phi mass constrains + mass windows

Mass distributions - JpsiPhi2KK

- JpsiEtap (stat consistent with previous Dimuon processing)
- JpsiPhi23Pi: with pi0 and phi mass constrains + mass windows
- JpsiPhi2KK (no offline cuts)

JpsiPhi23Pi veto

- In 2016-17-18 data set: we find 1825 fully reco'ed candidates
 - Save (in a C++ set) evt number of candidates falling in 3σ around Bs mass
 - Veto JpsiEtap candidates with event number belonging to the set
- In the 3σ window: 685 candidates are also JpsiEtap candidates
- Impact on signal still to be evaluated with MC (expect negligible)

- Adding mis-ID'ed contributions
 - Mass veto efficiency from MC: Bs2JpsiPiPi (92%) and B02JpsiK* (87%)
 - To estimate the yields, we fit the relevant mass distributions before veto and scale them by the expected MC veto efficiency.
 - JpsiPiPi: N = 7371 (and N(B0) = $5.7 \times N(Bs)$) $\rightarrow N(veto) = 590$
 - JpsiKPi: N = 6240 \rightarrow N(veto) = 861

- Previous fit model:
 - Yields of signal (N_{Bs} & N_{Bd}), of combinatorial (N_{Bkg}), of JpsiPhi (relative to signal (R_{Phi}), data/MC signal resolution (S_o), slope of combinatorial (α)

- New fit model:
 - Add JpsiPiPi and JpsiKPi with shapes taken from MC and fixed yields (i.e. no new parameters)
 - Still bad Chi2 but better residuals. Nsig = 5.74891e+03(1.7%)

- New fit model:
 - Add JpsiPiPi and JpsiKPi with shapes taken from MC and fixed yields (i.e. no new parameters)
 - Still bad Chi2 but better residuals. Nsig = 5.74891e+03(1.7%)

Treatment of JpsiPhi2KK

- Super clean mass distribution due to high PT-cut on Phi
- Separate KK resonant from rest using sPlot
 - Get the mass shapes from MC and fix the tails for the data fit

sPlot projections

- Super clean mass distribution due to high PT-cut on Phi
- Separate KK resonant from rest using sPlot
 - Get the mass shapes from MC and fix the tails for the data fit
 - Use Phi sPlot weights to project Bs (DTF-)mass

Mass fit of JpsiPhi2KK

- Super clean mass distribution due to high PT-cut on Phi
- Separate KK resonant from rest using sPlot
 - Get the mass shapes from MC and fix the tails for the data fit
 - Use Phi sPlot weights to project Bs (DTF-)mass

 \rightarrow fit yields 173136 events

Putting it together

- Signal mode
 - N1 = 5749 +/- 97
 - BR1 = $3.3 \times 10-4$. 29.1% = $9.60 \times 10-5$
 - eff1 = 1.81%
- Normalisation mode
 - N2 = 173136 +/- 419
 - BR2 = 1.08×10-3 . 48.9% = 5.28×10-4
 - eff2 = 10.05%
- Ratio
 - R = N1/N2. BR2/BR1. eff2/eff1 = 1.014

(precision of 15% given by branchings)

Outlook

- Almost there with the fit model
 - Improve control on JpsiKPiPi
 - Understand poor Chi2/Ndf
- Towards branching: dominating systematics:
 - Will need photon efficiency study from Anthony ($\chi_{c1}K$ VS J/ ϕK). On-going.
 - Normalisation mode: 2 kaons VS 2 pions. Compare kinematics and PIDCalib studies.
- Towards η/η' mixing
 - Repeat exercise with: etap2etapipi & eta2pipipi0
- Towards Φ s
 - Repeat exercice with: eta2gg & eta2pipig
 - Get hands-on with tagging tools + development of inclusive taggers (Boris & FT group)
- Next year
 - Manpower to make the difference available
 - Support Annecy/Edinburgh collaboration:

analysis on git (Ntuples, fits etc...), common standards etc...