
The H.E.S.S. view of our Galaxy in VHE gamma-rays

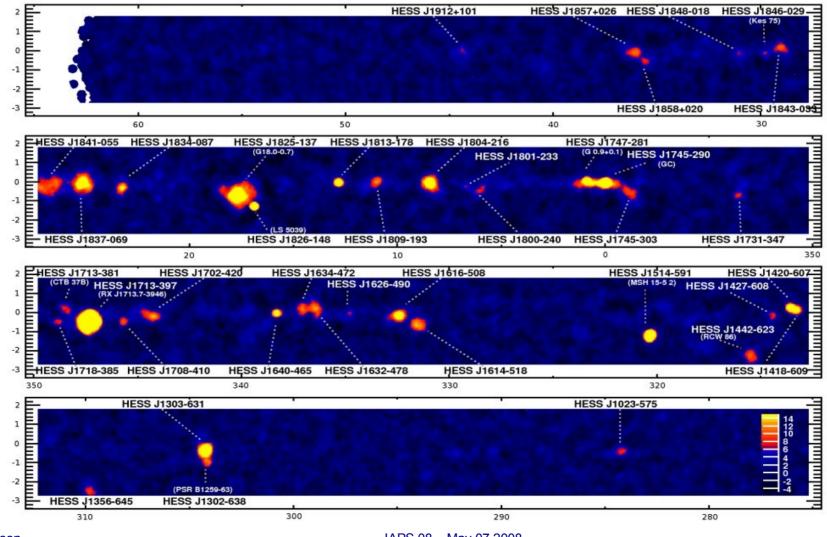
Armand Fiasson for the H.E.S.S. Collaboration

The High Energy Stereoscopic System (H.E.S.S.)

Array of 4 Imaging Atmospheric Cherenkov Telescopes

- Detects the Cherenkov light from atmospheric showers in stereoscopic mode
- Large field of view: 5°
- Energy range: 100 GeV to a few 10 TeV
- Résolution: $\Delta\theta \sim 0.1^{\circ}$ and $\Delta E/E \sim 16\%$

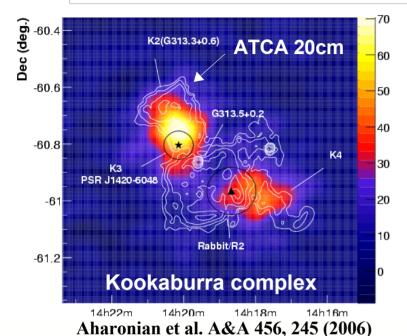
Located in the Khomas Highlands of Namibia

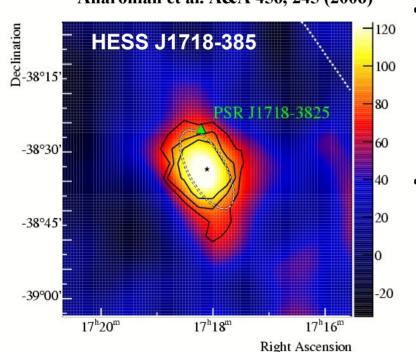

- Southern hemisphere
- => Ideal position to oberve the inner Galactic plane

Construction completed in December 2003

=> more than 4 years in full operation mode

The H.E.S.S. Galactic Plane Survey


- Systemactic survey of the inner galactic plane conducted since 2004
 - -85 ° < I < +60° and -3° < b < +3°
 - => successful: 8 new sources in 2004, > 15 new sources as of 12/2007



Which sources are detected?

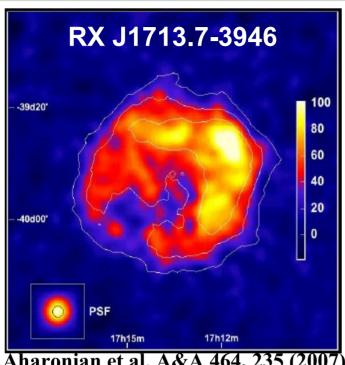
- VHE gamma-rays are tracers of non-thermal particle acceleration within our Galaxy
 - Neutral pions decay after deep inelastic proton-proton scattering
 - Inverse Compton of electrons (CMB, dust radiation, stellar radiation fields...)
- Most of the identified new sources are related to supernova remnants
 - Pulsar wind nebulae
 - Acceleration of the electron wind from the pulsar accelerated within its terminal shock
 - Shell type supernova remnants
 - Particle acceleration through Fermi mechanism
- Some of the new sources remains unidentified
 - Mostly extended sources along the Galactic plane
 - No obvious counterparts at other wavelengths
 - No candidate from where VHE gamma-ray emission is expected

Electron acceleration in PWN

Aharonian et al. A&A 472, 489 (2007)

An important fraction of the H.E.S.S. sources are associated with PWN

- G0.9+0.1, Kookaburra complex, Vela X,
 MSH 15-52, HESS J1825-137, G21.5-0.9, Kes 75 ...
- Plus others possibly associated with known pulsars
- Or without detected pulsars
- => largest class of the H.E.S.S. Galactic sources


Gamma-ray emission

- Of order 1% of the total spin-down luminosity of known pulsars
- Frequently offset from the pulsar position

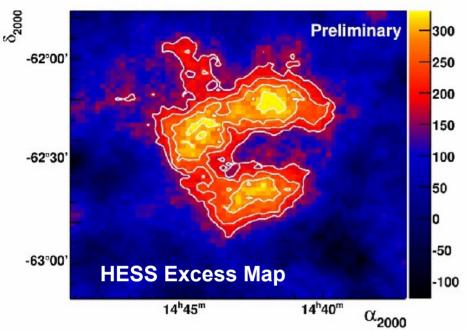
Comparaison to X-rays (synchrotron emission)

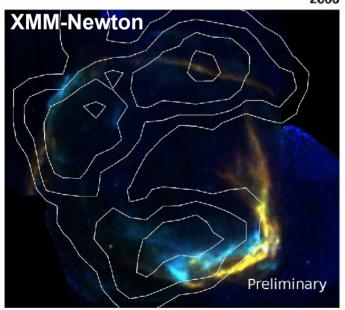
Implied magnetic field ~10µG in these nebulae

Shell-type SNRs

120 **Vela Junior** 100 -45.5 80 -46 60 -46.5 40 -47 20 -47.5 0 -20 -48 09h00m 08h50m RA (hours) Aharonian et al. ApJ 661, 236 (2007)

Aharonian et al. A&A 464, 235 (2007)


First shell morphology resolved in VHE gamma-rays


- Large angular size compared to the H.E.S.S. PSF
- Powerlaw with spectral index close to 2 up to 30 TeV
- => confirm the acceleration of particles with E $> 10^{14}$ eV

The nature of particle remains unidentified

- Electrons in a low intensity magnetic field (~ a few µG)
- Hadrons in a higher magnetic field (~ 100 µG, predicted by theoreticals models)

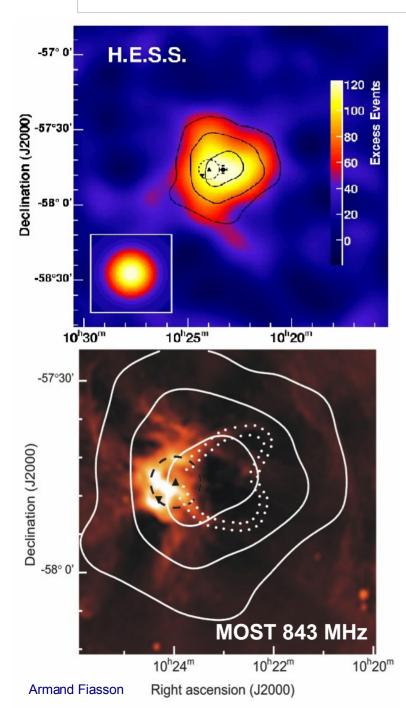
Shell-type SNRs: new detection

RCW 86

- More recent discovery
- The preliminary analysis compatible with partial shell
- Looks like the X-ray morphology seen by XMM-Newton

Gamma -ray spectrum

- Compatible with a PL of index 2.5
- 8% of the Crab Nebula in the range 1-10 TeV
- Possible cut-off around 5 TeV with a spectral index of 1.9


Leptonic scenario

Implies a magnetic field close 20 μG

Hadronic scenario

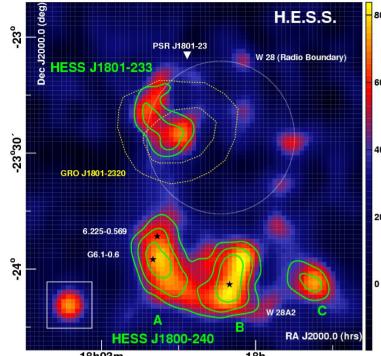
- Imply a distance close to 1 kpc with Γ =2.5
- Possible whatever the distance with Γ=1.9

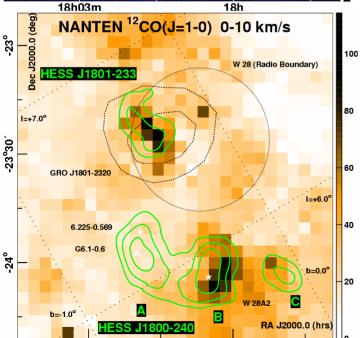
HESS J1023-575 & Westerlund 2

New class of VHE gamma ray emitter?

- Open young stellar cluster
- Blister seen in radio: rapid expansion in a low density medium

HESS J1023-575

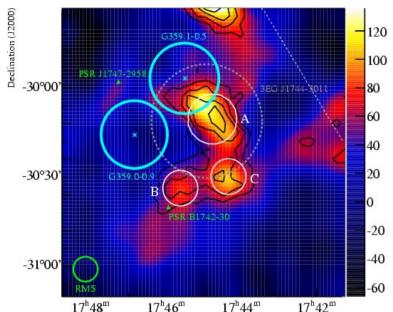

- Extended emission $\sigma \sim 0.18^{\circ} \pm 0.02^{\circ}$
- Compatible with a PL of index 2.51 ± 0.16


The stellar cluster and the blister are in good positionnal coincidence

- Supershell are expected to accelerate efficiently particles
- => collective effects of stellar winds

Aharonian et al. A&A 467,1075 (2007)

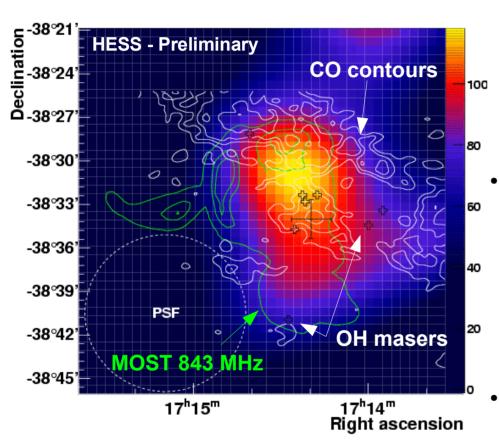
The W28 field



- Several VHE gamma-ray sources close to the SNR G6.4-0.1
 - 3 of them are extended emissions
 - Photon index Γ ~ 2.5 2.7
 - One coincident with an EGRET source (within W28)
- Interaction of the remnant with a dense molecular cloud seen in NANTEN CO (J=1→0) observations
 - Presence of OH masers (1720 MHz)
 - Northern gamma-ray emission coincident
 - => Energetics compatible with CRs accelerated within the SNR and interacting with the cloud
- Molecular clouds seen also in coincidence with the southern excesses
 - Distances compatible with the SNR
 - Hadronic scenario also possible
- Alternative scenario possible for the southern emissions
 - Others SNRs, young stars, open stellar cluster
 IAPS 08 May 07 2008 Aharonian et al. A&A 481, 401 (2008)

HESS J1745-303

CO Map -30.2 -30.4 -30.6 17h47m 17h46m 17h45m 17h44m 17h43m RA (hours)


New analysis of this unidentified H.E.S.S. source

- Discovered in the galactic scan in 2004
- Statistic increased in 2005 2007
- => complex morphology, possibly multiple
- Powerlaw of index Γ = 2.71± 0.11
- Still no obvious counterpart for the whole emission
- Pulsar wind nebula powered by PSR B1742-30
 - Could only explain a fraction of HESS J1745-303

A hadronic scenario could explain the northern part

- Interaction of the SNR G359.1-0.5 blast wave with a matter ring (OH masers 1720 MHz)
- CO observations reveals a coincidence of a fraction of this ring with the gamma-ray source
- Energetics compatible with CRs from the SNR interacting with the cloud
- => ~ 32% of the SN explosion energy into CRs

HESS J1714-385 & CTB 37A

Aharonian et al. submitted to A&A

Recently discovered by H.E.S.S.

- Coincident with SNR G348.5+0.3 (CTB 37A)
- Powerlaw with spectral index $\Gamma = 2.30 \pm 0.13$
- Extended source: σ ~ 4'
- Possible association with 3EG J1714-3857

Hadronic scenario

- SNR interacting with several molecular clouds (OH masers 1720 MHz)
- Gamma-ray energetics compatible with CRs accelerated by CTB 37A
- => [4% 33%] of the SN explosion energy into CRs

Leptonic scenario

- PWN candidate discovered in X-rays (Chandra & XMM-Newton)
- Possibly associated with CTB 37A
- ~0.1% conversion of the implied spin-down luminosity in gamma-rays

Summary

- The H.E.S.S. Experiment, with its high sensitivity, is ideally located to observe the inner part of the Galactic plane
- The Galactic plane survey, conducted since 2004, is successful
 - => more than 20 sources discovered
- Several supernova remnant have been detected
 - Shell-type SNRs resolved for the first time at TeV energies
 - Electron acceleration within PWNe
- Several binaries system have been also detected with different periods (not discussed in this tallk)
- New classes of objects have been more recently detected in the TeV range by H.E.S.S.
 - Young stellar cluster
 - Molecular clouds in the vicinity or particle accelerators
- A significant number of gamma-ray sources are still unidentified
- Continuation of this survey seems promising
 - HESS phase II will increase resolution and sensitivity to the current system.