7.5.5.2 : Saxpy with numpy functions

Now, let's write the saxpyNumpyPython.py file :

We need also to import several packages :
1
2
3
import sys
import numpy as np
import astericshpc
The function to evaluate performances is built the same way such as the C++ one :
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
def getTimeFunctionSize(nbRepetition, nbElement):
	tabX = np.asarray(np.random.random(nbElement), dtype=np.float32)
	tabY = np.asarray(np.random.random(nbElement), dtype=np.float32)
	tabRes = np.zeros(nbElement, dtype=np.float32)
	
	scal = 42.0
	
	timeBegin = astericshpc.rdtsc()
	for i in range(0, nbRepetition):
		tabRes = scal*tabX + tabY
	
	timeEnd = astericshpc.rdtsc()
	elapsedTime = float(timeEnd - timeBegin)/float(nbRepetition)
	elapsedTimePerElement = elapsedTime/float(nbElement)
	print("nbElement =",nbElement,", elapsedTimePerElement =",elapsedTimePerElement,"cy/el",", elapsedTime =",elapsedTime,"cy")
	print(str(nbElement) + "\t" + str(elapsedTimePerElement) + "\t" + str(elapsedTime),file=sys.stderr)
	Notice, the kernel which uses numpy is simpler than the previous one.
Then, we have a function to make all the points with a list of sizes :
1
2
3
def makeElapsedTimeValue(listSize, nbRepetition):
	for val in listSize:
		getTimeFunctionSize(nbRepetition, val)
Finally, we call the performances tests only if this script is executed as a main file and not if it is included by an other file :
1
2
3
4
5
6
7
8
9
10
11
if __name__ == "__main__":
	listSize = [1000,
			1600,
			2000,
			2400,
			2664,
			3000,
			4000,
			5000,
			10000]
	makeElapsedTimeValue(listSize, 1000000)
The full saxpyNumpyPython.py file :
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
'''
	Auteur : Pierre Aubert
	Mail : aubertp7@gmail.com
	Licence : CeCILL-C
'''

import sys
import numpy as np
import astericshpc

def getTimeFunctionSize(nbRepetition, nbElement):
	tabX = np.asarray(np.random.random(nbElement), dtype=np.float32)
	tabY = np.asarray(np.random.random(nbElement), dtype=np.float32)
	tabRes = np.zeros(nbElement, dtype=np.float32)
	
	scal = 42.0
	
	timeBegin = astericshpc.rdtsc()
	for i in range(0, nbRepetition):
		tabRes = scal*tabX + tabY
	
	timeEnd = astericshpc.rdtsc()
	elapsedTime = float(timeEnd - timeBegin)/float(nbRepetition)
	elapsedTimePerElement = elapsedTime/float(nbElement)
	print("nbElement =",nbElement,", elapsedTimePerElement =",elapsedTimePerElement,"cy/el",", elapsedTime =",elapsedTime,"cy")
	print(str(nbElement) + "\t" + str(elapsedTimePerElement) + "\t" + str(elapsedTime),file=sys.stderr)

def makeElapsedTimeValue(listSize, nbRepetition):
	for val in listSize:
		getTimeFunctionSize(nbRepetition, val)

if __name__ == "__main__":
	listSize = [1000,
			1600,
			2000,
			2400,
			2664,
			3000,
			4000,
			5000,
			10000]
	makeElapsedTimeValue(listSize, 1000000)
You can download it here.