
The Hadamard Product :

With NaN and Denorm

Pierre Aubert



The Hadamard product

zi = xi × yi , ∀i ∈ 1,N

Pierre Aubert, Hadamard Product perf with exotic values 2



Compilation options

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Pierre Aubert, Hadamard Product perf with exotic values 3

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html


Compilation options

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

I -O0
I Try to reduce compilation time, but -Og is better for debugging.

Pierre Aubert, Hadamard Product perf with exotic values 4

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html


Compilation options

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

I -O0
I Try to reduce compilation time, but -Og is better for debugging.

I -O1
I Constant forewarding, remove dead code (never called code)...

Pierre Aubert, Hadamard Product perf with exotic values 5

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html


Compilation options

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

I -O0
I Try to reduce compilation time, but -Og is better for debugging.

I -O1
I Constant forewarding, remove dead code (never called code)...

I -O2
I Partial function inlining, Assume strict aliasing...

Pierre Aubert, Hadamard Product perf with exotic values 6

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html


Compilation options

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

I -O0
I Try to reduce compilation time, but -Og is better for debugging.

I -O1
I Constant forewarding, remove dead code (never called code)...

I -O2
I Partial function inlining, Assume strict aliasing...

I -O3
I More function inlining, loop unrolling, partial vectorization...

Pierre Aubert, Hadamard Product perf with exotic values 7

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html


Compilation options

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

I -O0
I Try to reduce compilation time, but -Og is better for debugging.

I -O1
I Constant forewarding, remove dead code (never called code)...

I -O2
I Partial function inlining, Assume strict aliasing...

I -O3
I More function inlining, loop unrolling, partial vectorization...

I -Ofast
I Disregard strict standards compliance. Enable -ffast-math,

stack size is hardcoded to 32 768 bytes (borrowed from gfortran).
Possibily degrades the computation accuracy.

Pierre Aubert, Hadamard Product perf with exotic values 8

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html


The Hadamard product : reference Performances

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

Speed up of 14 between -O0 and -O3 or -Ofast

Pierre Aubert, Hadamard Product perf with exotic values 9



The Hadamard product : NaN Performance

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

Same performances in -O3

Pierre Aubert, Hadamard Product perf with exotic values 10



The Hadamard product : Denorm Perf

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

High impact on performances in -O3

Pierre Aubert, Hadamard Product perf with exotic values 11



The Hadamard product : vectorized Performances

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

Pierre Aubert, Hadamard Product perf with exotic values 12



The Hadamard product : vectorized NaN Perf

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

Same performances in -O3

Pierre Aubert, Hadamard Product perf with exotic values 13



The Hadamard product : vectorized Denorm Perf

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

High impact on performances in -O3

Pierre Aubert, Hadamard Product perf with exotic values 14



The Hadamard product : intrinsics Performances

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

Pierre Aubert, Hadamard Product perf with exotic values 15



The Hadamard product : intrinsics NaN Perf

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

Same performances in -O3

Pierre Aubert, Hadamard Product perf with exotic values 16



The Hadamard product : intrinsics Denorm Perf

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

High impact on performances in -O3

Pierre Aubert, Hadamard Product perf with exotic values 17



The Hadamard product : Performances summary

NaN values do not slow down the performances

Denormalised values affect a lot the performances :

I 1% : slow down computation by ∼ 5.7

I 10% : slow down computation by ∼ 31

I 50− 90% : slow down computation by ∼ 57

I 100% : same performance as 0%

Denormalised values affect a lot the intrinsics performances :

I 1% : slow down computation by ∼ 13

I 10% : slow down computation by ∼ 53

I 50− 90% : slow down computation by ∼ 22

I 100% : same performance as 0%

But can we solve this problem ?

Pierre Aubert, Hadamard Product perf with exotic values 18


