Previous Cas classique |
Parent Initialisation avec des nombres dénormalisés |
Outline | Next Calcul qui produit des nombres dénormalisés |
Figure 86 : Performances obtenues avec l'optimisation -O3 entre un produit de matrices naïf (+ violet) et la même fonction mais sur des tableaux initialisés aléatoirement avec des nombres dénormalisés, entre 1 (001) et $100%$ (1). À gauche, le temps total en nanosecondes en fonctions du nombre d'éléments. À droite, le temps par élément en nanosecondes en fonctions du nombre d'éléments.
Figure 87 : Performances obtenues avec l'optimisation -O3 entre un produit de matrices de référence (+ violet) et la même fonction mais sur des tableaux initialisés aléatoirement avec des nombres dénormalisés, entre 1 (001) et $100%$ (1). À gauche, le temps total en nanosecondes en fonctions du nombre d'éléments. À droite, le temps par élément en nanosecondes en fonctions du nombre d'éléments.
Figure 88 : Performances obtenues avec l'optimisation -O3 entre un produit de matrices vectorisé (+ violet) et la même fonction mais sur des tableaux initialisés aléatoirement avec des nombres dénormalisés, entre 1 (001) et $100%$ (1). À gauche, le temps total en nanosecondes en fonctions du nombre d'éléments. À droite, le temps par élément en nanosecondes en fonctions du nombre d'éléments.
Figure 89 : Performances obtenues avec l'optimisation -O3 entre un produit de matrices en fonctions intrisèques (+ violet) et la même fonction mais sur des tableaux initialisés aléatoirement avec des nombres dénormalisés, entre 1 (001) et $100%$ (1). À gauche, le temps total en nanosecondes en fonctions du nombre d'éléments. À droite, le temps par élément en nanosecondes en fonctions du nombre d'éléments.
Previous Cas classique |
Parent Initialisation avec des nombres dénormalisés |
Outline | Next Calcul qui produit des nombres dénormalisés |